HIGH-TEMPERATURE OXIDATION OF FE-CR STEELS IN STEAM CONDITION – A REVIEW

Authors

  • Tedi Kurniawan University Malaysia Pahang Author
  • Farah Alia Binti Fauzi University Malaysia Pahang Author
  • Yuli Panca Asmara University Malaysia Pahang Author

Keywords:

Steam oxidation, Power plant, Ferritic steel, Boiler

Abstract

The development of supercritical (SC) and ultra-supercritical (USC) power plants requires materials with better corrosion properties. Deep understanding on the oxidation mechanism in the boiler environment is one of the important factors to support this development. In this work, high temperature oxidation of Fe-Cr steels in steam condition is reviewed.  Several mechanisms that explain the effect of water vapor in the oxidation behavior the steel were presented.

Downloads

Download data is not yet available.

Author Biographies

  • Tedi Kurniawan, University Malaysia Pahang

    Faculty of Mechanical Engineering

  • Farah Alia Binti Fauzi, University Malaysia Pahang

    Faculty of Mechanical Engineering

  • Yuli Panca Asmara, University Malaysia Pahang

    Faculty of Mechanical Engineering

References

Ani, M. H., Kodama, T., Ueda, M., Kawamura, K., and Maruyama, T. (2009). The effect of water vapor on high temperature oxidation of Fe-Cr alloys at 1073 K. Materials transactions, 50(11), 2656-2663.

Asteman, H., Svensson, J. E. and Johansson, L. G. (2002). Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate. Oxidation of metals, 57(3), 193–216.

Asteman, H., Svensson, J. E., Norell, M. and L.G. Johansson, L. G. (2000). Influence of water vapor and flow rate on the high-temperature oxidation of 304L; Effect of chromium oxide hydroxide evaporation. Oxidation of metals. 54(1), 11–26.

Ennis, P., and Quadakkers, W. (2007). Implications of steam oxidation for the service life of high-strength martensitic steel components in high-temperature plant. International journal of pressure vessels and piping, 84(1-2), 82-87.

Ehlers, J., Young, D., Smaardijk, E., Tyagi, A., Penkalla, H., Singheiser, L., and Quadakkers, W. (2006). Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments. Corrosion science, 48(11), 3428-3454.

Essuman, E., Meier, G., Żurek, J., Hänsel, M., Singheiser, L., and Quadakkers, W. (2007). Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor. Scripta materialia, 57(9), 845-848.

Essuman, E., Meier, G., Żurek, J., Hänsel, M., Singheiser, L., and Quadakkers, W. (2007). Enhanced internal oxidation as trigger for breakaway oxidation of Fe–Cr alloys in gases containing water vapor. Scripta materialia, 57(9), 845-848.

Huang, J., Zhou, K., Xu, J., and Bian, C. (2013). On the failure of steam-side oxide scales in high temperature components of boilers during unsteady thermal processes. Journal of loss prevention in the process industries, 26(1), 22-31.

Kurniawan, T. (2013a). Hydrogen permeability in the scales of iron oxide at 973 K under constant oxygen activity (Doctoral dissertation, Tokyo Institute of Technology).

Kurniawan, T., Ueda, M., Kawamura, K., and Maruyama, T. (2013b). Phase stability of iron oxides on palladium–iron alloy at elevated temperatures and its application to high temperature oxidation. Materials transactions, 54(9), 1829-1837.

Lepingle, V., Louis, G., Allué, D., Lefebvre, B., and Vandenberghe, B. (2008). Steam oxidation resistance of new 12%Cr steels: Comparison with some other ferritic steels. Corrosion science, 50(4), 1011-1019.

McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource technology, 83(1), 47-54.

Nakagawa, K., Matsunaga, Y., and Yanagisawa, T. (2001). Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment. Materials at high temperatures, 18(1), 51-56.

Nakagawa, K., Matsunaga, Y., and Yanagisawa, T. (2003). Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment. Materials at high temperatures, 20(1), 67-73.

Nakai, M., Nagai, K., Murata, Y., Morinaga, M., Matsuda, S., and Kanno, M. (2005). Correlation of high-temperature steam oxidation with hydrogen dissolution in pure iron and ternary high-chromium ferritic steel. ISIJ Int. ISIJ international, 45(7), 1066-1072.

Setiawan, A. R., Ani, M. H., Ueda, M., Kawamura, K., and Maruyama, T. (2010). Oxygen permeability through internal oxidation zone in Fe–Cr alloys under dry and humid conditions at 973 and 1 073 K. ISIJ Int. ISIJ international, 50(2), 259-263.

Ueda, M., Maruyama, T. (2005). High temperature steam oxidation of high Cr ferritic steels. Zairyou-to-Kanyou, 54(5), 175-182.

Viswanathan, R., Henry, J., Tanzosh, J., Stanko, G., Shingledecker, J., Vitalis, B., and Purgert, R. (2005). U.S. Program on materials technology for ultra-supercritical coal power plants. Journal of materials engineering and performance, 14(3), 281-292.

Żurek, J., Wessel, E., Niewolak, L., Schmitz, F., Kern, T., Singheiser, L., and Quadakkers, W. (2004). Anomalous temperature dependence of oxidation kinetics during steam oxidation of ferritic steels in the temperature range 550–650 °C. Corrosion science, 46(9), 2301-2317.

Downloads

Published

2024-01-23

How to Cite

HIGH-TEMPERATURE OXIDATION OF FE-CR STEELS IN STEAM CONDITION – A REVIEW. (2024). Indonesian Journal of Science and Technology, 1(1), 107-114. https://ejournal.kjpupi.id/index.php/ijost/article/view/229