DIRAC PARTICLES EMISSION FROM AN ELLIPTICAL BLACK HOLE

Authors

  • Yuant Tiandho Universitas Bangka Belitung Author

Keywords:

en

Abstract

According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.

Downloads

Download data is not yet available.

Author Biography

  • Yuant Tiandho, Universitas Bangka Belitung

    Department of Physics

References

Ding, H., and Liu, W. B. (2011). Hawking radiation from a Vaidya black hole by Hamilton-Jacobi method. Frontiers of physics in china, 6(1), 106-108.

Hawking, S. W. (1974). Black hole explosions. Nature, 248(5443), 30-31.

Hawking, S. W. (1975). Particle creation by black holes. Communications in mathematical physics, 43(3), 199-220.

Kai, L., and Shu-Zheng, Y. (2009). A new method of researching fermion tunneling from the Vaidya–Bonner de Sitter black hole. Chinese physics B, 18(6), 2154.

Kerner, R., and Mann, R. B. (2008). Charged fermions tunnelling from Kerr–Newman black holes. Physics letters B, 665(4), 277-283.

Li, X. Q., and Chen, G. R. (2015). Massive vector particles tunneling from Kerr and Kerr–Newman black holes. Physics letters B, 751, 34-38.

Ma, Z. Z. (2008). Hawking temperature of Kerr–Newman–AdS black hole from tunneling. Physics letters B, 666(4), 376-381.

Nikouravan, B., and Rawal, J. J. (2011). Behavior of elliptical objects in general theory of relativity. Small, 2(2), 2.

Nikouravan, B., Ibrahim, K. N., Abdullah, W. W., and Sukma, I. (2013). Reissner-Nordstrom solution for non-rotating elliptical charged celestial objects. Advanced studies in theoretical physics, 7(24), 1231-1234.

Siahaan, H. M., and Triyanta. (2010). Semiclassical methods for Hawking radiation from a Vaidya black hole. International journal of modern physics A, 25(01), 145-153.

Tiandho, Y. (2016). Dirac particles emission from Reissner-Nordstrom-Vaidya Black Hole. Journal of physics: Conference series, 739 (1), 012146.

Triyanta, T., and Bowaire, A. N. (2013). Hawking temperature of the Reissner-Nordstrom-Vaidya Black Hole. Journal of mathematical and fundamental sciences, 45(2), 114-123.

Umetsu, K. (2010). Hawking radiation from Kerr–Newman black hole and tunneling mechanism. International journal of modern physics A, 25(21), 4123-4140.

Downloads

Published

2024-01-23

How to Cite

DIRAC PARTICLES EMISSION FROM AN ELLIPTICAL BLACK HOLE. (2024). Indonesian Journal of Science and Technology, 2(1), 50-56. https://ejournal.kjpupi.id/index.php/ijost/article/view/198