Hydroxyapatite as Delivery and Carrier Material: Systematic Literature Review with Bibliometric Analysis
Keywords:
Carrier material, Delivery material, HydroxyapatiteAbstract
Hydroxyapatite (HA), a bioactive calcium phosphate compound, has garnered significant attention in biomedical and pharmaceutical research due to its remarkable properties as a delivery and carrier material. This review aims to comprehensively analyze the extensive research surrounding HA's applications in drug delivery and as a carrier for various therapeutic agents, encompassing various studies from scientific articles focusing on HA-based systems designed for drug delivery, tissue engineering, and other therapeutic applications. The review also investigates the HA synthesis and modification methods for tailored drug release profiles, as well as the interaction between HA and bioactive molecules. Key findings from the review include the versatility of HA as a biocompatible carrier, its ability to facilitate controlled drug release, and its potential to enhance tissue regeneration. The review identifies trends in HA-based delivery systems, highlighting recent advances and emerging research directions, as well as providing valuable insights into the current state of HA-based drug delivery and carrier materials, shedding light on the potential of HA to revolutionize the field of biomedicine. It serves as a valuable resource for researchers, clinicians, and pharmaceutical professionals seeking to harness the capabilities of HA in developing innovative therapeutic strategies.
Downloads
References
Abdul Halim, N. A., Hussein, M. Z., and Kandar, M. K. (2021). Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. International Journal of Nanomedicine, 16, 6477-6496.
Abdulrahman, I., Tijani, H. I., Mohammed, B. A., Saidu, H., Yusuf, H., Ndejiko Jibrin, M., and Mohammed, S. (2014). From garbage to biomaterials: an overview on egg shell based hydroxyapatite. Journal of Materials, 2014(1), 802467.
Asghar, M. S., Ghazanfar, U., Idrees, M., Irshad, M. S., Haq, Z., Javed, M. Q., and Rizwan, M. (2023). In vitro controlled drug delivery of cationic substituted hydroxyapatite nanoparticles; enhanced anti-chelating and antibacterial response. Kuwait Journal of Science, 50(2), 97-104.
Biedrzycka, A., Skwarek, E., and Hanna, U. M. (2021). Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Advances in Colloid and Interface Science, 291, 102401.
El-Habashy, S., Eltaher, H., Gaballah, A., Mehanna, R., and El-Kamel, A. H. (2021). Biomaterial-based nanocomposite for osteogenic repurposing of doxycycline. International Journal of Nanomedicine, 16, 1103-1126.
Family, R., Solati-Hashjin, M., Nik, S. N., and Nemati, A. (2012). Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian Journal of Internal Medicine, 3(3), 460.
Farkas, N. I., Marincaș, L., Barabás, R., Bizo, L., Ilea, A., Turdean, G. L., and Barbu-Tudoran, L. (2022). Preparation and characterization of doxycycline-loaded electrospun PLA/HAP nanofibers as a drug delivery system. Materials, 15(6), 2105.
Filip, D. G., Surdu, V. A., Paduraru, A. V., and Andronescu, E. (2022). Current development in biomaterials—hydroxyapatite and bioglass for applications in biomedical field: A review. Journal of Functional Biomaterials, 13(4), 248.
Gomes, D. S., Santos, A. M. C., Neves, G. A., and Menezes, R. R. (2019). A brief review on hydroxyapatite production and use in biomedicine. Cerâmica, 65, 282-302.
Hassanzadeh-Tabrizi, S. A., Norbakhsh, H., Pournajaf, R., and Tayebi, M. (2021). Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications. Ceramics International, 47(13), 18167-18176.
Higino, T., and França, R. (2022). Drug-delivery nanoparticles for bone-tissue and dental applications. Biomedical Physics and Engineering Express, 8(4), 042001.
Irwansyah, F. S., Amal, A. I., Diyanthi, E. W., Hadisantoso, E. P., Noviyanti, A. R., Eddy, D. R., and Risdiana, R. (2024). How to read and determine the specific surface area of inorganic materials using the Brunauer-Emmett-Teller (BET) method. ASEAN Journal of Science and Engineering, 4(1), 61-70.
Irwansyah, F. S., Amal, A. I., Hadisantoso, E. P., Noviyanti, A. R., Eddy, D. R., Risdiana, R., and Zain, S. B. M. (2023). How to make and characterize hydroxyapatite from eggshell using the hydrothermal method: Potential insights for drug delivery system. Indonesian Journal of Science and Technology, 8(3), 469-486.
Irwansyah, F. S., Noviyanti, A. R., Eddy, D. R., and Risdiana, R. (2022). Green template-mediated synthesis of biowaste nano-hydroxyapatite: A systematic literature review. Molecules, 27(17), 5586.
Irwansyah, F. S., Noviyanti, A. R., Eddy, D. R., and Risdiana, R. (2022a). Green template-mediated synthesis of biowaste nano-hydroxyapatite: A systematic literature review. Molecules, 27(17), 5586.
Kotak, D. J., and Devarajan, P. V. (2020). Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomedicine: Nanotechnology, Biology and Medicine, 24, 102153.
Kuśnieruk, S., Wojnarowicz, J., Chodara, A., Chudoba, T., Gierlotka, S., and Lojkowski, W. (2016). Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles. Beilstein Journal of Nanotechnology, 7(1), 1586-1601.
Lamkhao, S., Phaya, M., Jansakun, C., Chandet, N., Thongkorn, K., Rujijanagul, G., and Randorn, C. (2019). Synthesis of hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Scientific Reports, 9(1), 4015.
Lara-Ochoa, S., Ortega-Lara, W., and Guerrero-Beltrán, C. E. (2021). Hydroxyapatite nanoparticles in drug delivery: physicochemistry and applications. Pharmaceutics, 13(10), 1642.
Lee, M. C., Seonwoo, H., Jang, K. J., Pandey, S., Lim, J., Park, S., and Chung, J. H. (2021). Development of novel gene carrier using modified nano hydroxyapatite derived from equine bone for osteogenic differentiation of dental pulp stem cells. Bioactive Materials, 6(9), 2742-2751.
Levingstone, T., Ali, B., Kearney, C., and Dunne, N. (2021). Hydroxyapatite sonosensitization of ultrasound‐triggered, thermally responsive hydrogels: An on‐demand delivery system for bone repair applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 109(10), 1622-1633.
Liu, Y., Nadeem, A., Sebastian, S., Olsson, M. A., Wai, S. N., Styring, E., and Raina, D. B. (2022). Bone mineral: A trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Materials Today Bio, 14, 100227.
Liu, Y., Puthia, M., Sheehy, E. J., Ambite, I., Petrlova, J., Prithviraj, S., and Raina, D. B. (2023). Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing. Acta Biomaterialia, 162, 164-181.
Liu, Y., Raina, D. B., Sebastian, S., Nagesh, H., Isaksson, H., Engellau, J., and Tägil, M. (2021). Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma. Acta Biomaterialia, 131, 555-571.
Mondal, S., Dorozhkin, S. V., and Pal, U. (2018). Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 10(4), e1504.
Mozar, F. S., and Chowdhury, E. H. (2017). Surface-modification of carbonate apatite nanoparticles enhances delivery and cytotoxicity of gemcitabine and anastrozole in breast cancer cells. Pharmaceutics, 9(2), 21.
Munir, M. U., Salman, S., Javed, I., Bukhari, S. N. A., Ahmad, N., Shad, N. A., and Aziz, F. (2021). Nano-hydroxyapatite as a delivery system: overview and advancements. Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 717-727.
Noviyanti, A. R., Akbar, N., Deawati, Y., Ernawati, E. E., Malik, Y. T., and Fauzia, R. P. (2020). A novel hydrothermal synthesis of nanohydroxyapatite from eggshell-calcium-oxide precursors. Heliyon, 6(4), e03655.
Noviyanti, A. R., Juliandri, J., Ernawati, E. E., Haryono, H., Solihudin, S., Dwiyanti, D., and Zain, S. B. M. (2023). Hydrothermally synthesized hydroxyapatite-silica composites with enhanced mechanical properties for bone graft applications. Chemistry, 5(3), 1645-1655.
Pandharipande, S. L., and Sondawale, S. S. (2016). Review on synthesis of hydroxyapatite and its bio-composites. International Journal on Engineering, Science and Technology, 5, 3410-3416.
Rial, R., Hassan, N., Liu, Z., and Ruso, J. M. (2021). The design and green nanofabrication of noble hydrogel systems with encapsulation of doped bioactive hydroxyapatite toward sustained drug delivery. Journal of Molecular Liquids, 343, 117598.
Silva-Holguín, P. N., and Reyes-López, S. Y. (2020). Synthesis of hydroxyapatite-Ag composite as antimicrobial agent. Dose-Response, 18(3), 1559325820951342.
Simon, D., Kumar, K. A., Sivadasan, S. B., Varma, H., and Balan, A. (2020). Hydroxyapatite carriers as drug eluting agents—An In Vitro analysis. Indian Journal of Dental Research, 31(3), 481-485.
Tewabe, A., Abate, A., Tamrie, M., Seyfu, A., and Abdela Siraj, E. (2021). Targeted drug delivery—from magic bullet to nanomedicine: Principles, challenges, and future perspectives. Journal of Multidisciplinary Healthcare, 14, 1711-1724.
Uskoković, V. (2020). Ion-doped hydroxyapatite: An impasse or the road to follow?. Ceramics International, 46(8), 11443-11465.
Wan, W., Li, Z., Wang, X., Tian, F., and Yang, J. (2022). Surface-fabrication of fluorescent hydroxyapatite for cancer cell imaging and bio-printing applications. Biosensors, 12(6), 419.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.