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A B S T R A C T   A R T I C L E   I N F O 

Ensuring reliable inference in local polynomial regression 
requires robust methods that can manage data irregularities, 
particularly outliers. This study introduces an adaptive robust 
approach for constructing confidence bands using residual 
bootstrap percentiles. Two robust weighting techniques 
(Huber and Tukey) were applied to address different levels of 
data contamination. The method was evaluated using both 
simulated datasets and real-world observations involving 
fluctuating patterns. Huber weighting produced more stable 
and narrower confidence bands under moderate anomalies, 
while Tukey weighting was more effective in handling 
extreme deviations. These differences arise because Huber 
downweights moderate residuals proportionally, whereas 
Tukey aggressively suppresses extreme outliers. Smoothing 
parameters were optimized through cross-validation to 
balance bias and variance effectively. This approach 
enhances the robustness of nonparametric regression 
because it maintains consistent confidence coverage despite 
data imperfections, offering a reliable tool for statistical 
inference in complex datasets. 
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1. INTRODUCTION 
 

Local polynomial regression is a flexible non-parametric method that can capture non-
linear patterns in the relationship between predictor and response variables. Unlike 
parametric models that assume a particular functional form, this method adjusts the 
estimation structure based on local data, making it suitable for analyzing datasets with 
irregular trends or containing noise. Combining moving averages and polynomial regression 
allows this technique to produce smooth and accurate estimates across data segments [1]. 

The flexibility of local polynomial regression has been applied in various fields. Some 
researchers used this method to detect extreme points in time series data, balancing between 
error and model complexity. In chemistry and biology, some researchers [2] demonstrated 
this method in predicting biological responses and toxicity, especially in complex datasets. 
The choice of optimal smoothing parameters can affect the performance of non-parametric 
regression and provide more accurate results in dealing with complex data [3]. The methods 
for robust regression are widely used to handle outliers and heteroscedasticity, as further 
discussed in the Methods section. 

To improve the robustness to outliers, some researchers [4] introduced the Robust Local 
Weighted Regression approach, which uses adaptive weights based on the distance between 
the data points and the focus of estimation. Then, the robust local polynomial regression 
curve surface provides a smoother curve on data containing outliers. The principle of its work 
is an iterative approach, these weights are updated using residuals from the previous model, 
thereby increasing the robustness of the estimation to the influence of extreme data. 

In the context of confidence bands, bootstrapping has proven to be an effective method, 
especially for non-parametric regression. Some researchers [5] introduced the percentile 
bootstrap method to construct confidence bands based on the distribution of resampling 
results. This approach requires no particular distributional assumptions, making it ideal for 
non-linear and complex data. Some researchers [6] noted that naïve bootstrap methods often 
result in inadequate coverage for confidence bands, particularly for data with high variability. 

Some researchers [7,8] developed the bootstrap-t and percentile methods for local 
polynomial regression, which proved reliable in providing band estimates even at small 
sample sizes. Using bootstrap residuals, their study showed that the coverage of band 
probabilities can be significantly improved, especially through uncertainty simulation based 
on normally distributed true functions. 

Several researchers have developed adaptive approaches in the development of local 
polynomial regression. The balance of bias and variance of adaptive modeling requires special 
attention in heteroscedastic data or irregular trends. Some researchers proposed penalized 
splines to regulate model complexity, providing flexibility in handling data fluctuations. Some 
researchers [9] developed a shape-constrained approach, while other researchers [10] 
advanced isotonic quantile regression, both improving probability coverage for 
nonparametric datasets.  

We extend these advances by introducing an adaptive robust framework for constructing 
bootstrap residual percentile confidence bands in local polynomial regression. The proposed 
method integrates data-driven adjustment with Tukey and Huber weights, focusing on 
parameter tuning such as the weight cutoff and optimal smoothing parameters. These 
parameter tunings balance bias and variance and ensure consistent nominal coverage. The 
robustness and adaptability of the method are validated through simulations with controlled 
outlier proportions (5%, 10%, 15%) and real-world data from Kualanamu International 
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Airport. It contributes to the development of reliable statistical tools for real-world 
applications.  

The remainder of this article will cover several main sections. The methodology section 
explains the concept and theory of robust local polynomial regression and the proposed 
approach for confidence band construction using percentile bootstrap residuals. This section 
also includes a hierarchical explanation of the algorithm, detailing the steps of adaptive 
confidence bands construction with Tukey and Huber weight integration. Next, simulation 
results are presented in two types of data: synthetic data generated through experimental 
simulations to control the proportion of outliers and noise, and real-world data from 
Kualanamu International Airport used to evaluate the method's applicability in practical 
situations. These results are analyzed to assess the ability of the bootstrap residual approach 
to ensure consistent coverage of confidence bands despite data fluctuations and extreme 
points during the COVID-19 pandemic. Finally, the concluding section summarizes the main 
findings, identifies the strengths of the proposed method, and provides recommendations for 
further development, both in the context of statistical methodology and real-world 
applications. 

2. METHODS 
 

The methodology proposed in this paper includes implementing robust weighting methods 
and a residual bootstrap algorithm specifically designed to handle data with complex 
characteristics, such as outliers and heteroscedasticity. This section consists of two main 
subsections. The first subsection discusses the basic concepts of robust local polynomial 
regression, including adjusting weighting parameters to improve robustness to extreme data. 
The second subsection describes the framework for robust residual bootstrap-based 
confidence band construction. This section systematically describes the implementation steps 
to achieve optimal confidence band construction consistent with the expected nominal 
probability coverage. 

2.1. Robust Local Polynomial Regression 

This section introduces two fundamental concepts: local polynomial regression and robust 
local polynomial regression. Local polynomial regression is a nonparametric model in which 
the regression function is approximated by locally fitting a polynomial to the data within the 
predictor space. In this approach, observations closer to the point of interest are given higher 
weights, which helps the model make more accurate estimates near the point of estimation 
[11]. There are two parameters for smoothing a scatterplot: the smoothing parameter and 
the polynomial degree. The smoothing parameter influences the fit of local regression, where 

its value ranges between zero and one. If  is too small, it approaches zero, the scatterplot 
smoothing becomes convoluted (noisy), which means that the number of nearest neighbors 
(k-Nearest Neighbors) included in the smoothing span is insufficient, so the variance becomes 
large. On the other hand, if α is too close to one, the scatterplot smoothing becomes 
smoother. However, the local polynomial regression may not fit the data within the 
smoothing span, so essential features of the averaging function may be distorted or lost 
altogether, which will have a significant bias. It is possible to choose the smoothing parameter 

 based on the researcher's subjectivity or search for optimal parameters based on a 

compromise of the bias-variance trade-off. Therefore, an optimal must be sought to balance 
bias and diversity to obtain a reasonable estimate. 
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The choice of polynomial degree must also be considered. Researchers recommend low-
degree polynomials such as degrees one and two. It is better if the selection of a high degree 
impacts greater diversity, even though the modeling bias is reduced. The choice of polynomial 
degree tends to be based on the researcher's wishes (subjectivity) by considering the 
characteristics of the data. We only focus on local polynomial regression of degree two and 
focus more on smoothing parameters. Several researchers [7,8] have shown that second-
degree polynomials are more than sufficient to capture data patterns. 

Next, we focus on the local polynomial regression model where bivariate data is available, 
which is expressed by mutually independent ordered pairs, (x1, y1), (x2, y2), ⋯ , (xn, yn). The 
function that relates xi to yi can be expressed in Equation (1), 

yi = m(xi) + εi, i = 1, 2 , . . . , n                                                             (1) 

where  E(yi|xi) = m(xi) and m is a smooth real-valued function that is unknown but will be 
estimated. The error term εi is an independently distributed random variable with E(εi|xi) =
0 and Var(εi|xi) = σ2(xi). If it is assumed that the function m is a continuous function and 
can be differentiated up to order (p + 1), then the function m(xi) can be expressed as an 
approximation of the Taylor series expansion on x0 in Equation (2), 

m(xi) ≈ m(x0) + m′(x0)(xi − x0) +  
m′′(x0)

2!
(xi − x0)2 + ⋯

mp(x0)

p!
(xi − x0)p             (2) 

where xi ∈ ℕ(x0) with ℕ(x0) defined as a set of data points in the vicinity, or often expressed 
as the nearest neighboring data points of x0. Using the k-Nearest Neighbors (k-NN) principle, 
the regression function at a point x0 is estimated by considering the weighted sum of squared 
errors, where the weights are determined by the distance between x0 and the neighboring 
points in the predictor space. The k-NN principle plays a key role in identifying the local 
neighborhood for regression estimation. The local polynomial regression estimation problem 
is then reduced to estimating the polynomial regression in the neighborhood ℕ(x0) by 
minimizing the weighted sum of squared errors in Equation (3), as discussed by other reports 
[11]. 

∑ wi(x0) {y(xi) − ∑ βj(xi − x0)jp
j=0 }k

i=1

2

                                                        (3) 

The weighting value wi(x0) is obtained from the function wi(x0) = W(|xi −  x0|/∆(x0)) 
where ∆(x0) is the maximum Euclidean distance x0 to a point xi ∈ ℕ(x0). By supposing u =
|xi −  x0|/∆(x0), the weight function W has the following properties [4], 
(i) W(u) > 0, for −1 < u <  1; 
(ii) W(−u)  =  W(u); 
(iii) W(u) is a non-increasing function for u ≥ 0; 
(iv) W(u) = 0, for u ≤ −1 or u ≥ 1. 

Several selections of weight functions can be found in [3]. This research does not 
concentrate on the weight function but rather on case studies that have been determined. 
We choose the tricube weight function as in Equation (4) [4]. 

W(u) = {
(1 − |u|3)3, for |u| <  1

 
0                 ,   for  |u| ≥  1

                                                           (4) 

Other researchers derive the solution of Equation (3) in the form of a matrix equation in 
Equation (5), 

�̂�𝛂 = (𝐗𝛂
𝐓𝐖𝛂𝐗𝛂)−𝟏𝐗𝛂

𝐓𝐖𝛂𝐘𝛂                                                              (5) 
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where, 𝐗α = (
1 (x1 − x0) ⋯ (x1 − x0)p

⋮          ⋮            ⋯ ⋮
1 (xk − x0) ⋯ (xk − x0)p

), 𝐘𝛂 = (y1, … , yk)′, �̂�α = (β̂0, … β̂p)′ 

and 𝐖α = (

w1(x0) 0 0           0
0 w2(x0) 0            0
⋯
0

⋯
0

⋯          0
⋯ wk(x0)

) = diag(w1(x0), … , wk(x0)). 

Based on other reports [7], the predicted point x0 following Equation (6) is, 

ŷ(x0) = ∑ β̂j
p
j=0 x0

j
                                                                       (6) 

The above procedure is repeated to predict specific points of interest, for example, the 
vector 𝐗 = (x1, … xn)′. Next, we derive a robust local polynomial regression by first finding 
the local polynomial regression residual, ε̂i = yi − ŷi. Then the robust weight is obtained from 
Equation (7), 

ri = W (
ε̂i

6s
)                                                                             (7) 

where s represents the median of |ε̂i|. The above procedure is repeated using Equation (3), 
but the weights are now, riwi. By considering data points in ℕ(x0) to perform a curve fit. The 
iterative process conforms to the principle of iteration in optimization so that the regression 
curve converges or stops changing. The researcher's convergence tolerance determines 
whether to stop the iteration. The simulation only needs two or three iterations to get a 
reasonable model (see Table 1) [12]. 

Table 1. The algorithm below shows the steps for a robust local polynomial regression 
prediction. 

Robust Local Polynomial Regression Algorithm 

1. Perform data matching using a local polynomial regression procedure with the selection of the weight 
function W; 

2. Perform residual calculations, ε̂i = yi − ŷi, for each data point; 
3. Determine s which is the median of |ε̂i|; 
4. Determine the robust weight ri; 
5. Perform the local polynomial regression procedure again, but use the weights riwi; 
6. Repeat steps 2 to 5 until the local polynomial regression predictions converge within the given 

tolerance. 

 
2.2. Proposed Robust Bootstrap Confidence Band Technique 

We propose a robust bootstrap confidence band technique through several stages. The 

first stage searches for the optimal smoothing parameters (optimal) based on the available 

data. The principle of searching for optimal considers the variance-bias trade-off. Too small a 
smoothing parameter results in high variance and low bias, while too large a parameter 

results in low variance and high bias. By determining the optimal, the model can effectively 
capture the underlying data pattern while remaining robust to noise and outliers, thus 
achieving an ideal balance between bias and variance. A smoothing parameter search 
algorithm using Cross-Validation [7]. We use their provisions to obtain optimal smoothing 
parameters using the data, where the search for optimal smoothing parameters using 
Equation (8) is expressed by α𝑜𝑝𝑡𝑖𝑚𝑎𝑙, 
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α𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = arg min
α∈I

(CV(α)),   I = (0,1)                                                           (8) 

where, CV(α) =
1

n
∑ (y(xi) − ŷα

−i(xi))
2

n
i=1 and ŷα

−i(xi) is the model prediction at point xi by 

deleting one data point.  
In the second stage, the robust local polynomial regression algorithm applies a data-

matching process using the optimal smoothing parameters and low polynomial degrees. This 
process connects the predictor data xi with the predicted results ŷi. The result is a pair (xi, ŷi), 
which is used to calculate the residual ei and bootstrap. This step ensures that the regression 
model produces predictions that match the characteristics of the original data, just for 
information for readers that ei ≠ ε̂i. The notation ε̂i indicates the residual of the local 
polynomial regression, while ei is the residual of the robust local polynomial regression. 

The third stage performs a residual transformation with the Median Absolute Deviation 
(MAD) to be more robust to outliers than the traditional standard deviation. After the MAD 
is calculated, the residuals are transformed into standardized residuals using Equation (9), 

ẽi = |ei| MAD⁄                                                           (9) 

where MAD = 1.48261 × median(|e − median(e)|) with e being the residual vector. The 
coefficient 1.48261 is used to adjust the MAD to be consistent with the standard deviation of 
the data following a normal distribution. 

The fourth stage applies the robust approach (Huber and Tukey) to handle outliers. The 
Huber weights in Equation (10) are a robust method that integrates the advantages of two 
different approaches: 1) a linear approach where residuals with small values are treated as in 
conventional regression, thus giving them full weight, and 2) a constant approach where 
residuals with large values are given lower weights to reduce their impact on the model, 
making them more resistant to the influence of outliers. The Huber weight formulation is 
given in Equation (10), 

wi = {
1,            if |ẽi| ≤ c

c |ẽi|⁄ , if |ẽi| > c
     (10) 

where c is the cutoff that controls the transition between full weight (w = 1) and reduced 

weight; meanwhile, Tukey weights in Equation (11) are more aggressive in handling outliers, 

where residuals greater than the cutoff c are ignored or given zero weight (w = 0). The Tukey 

weight formulation is given in Equation (11). 

wi = {
(1 − (ẽi c⁄ )2)2,     if |ẽi| ≤ c

0,                              if |ẽi| > c
   (11) 

At this stage, the standardized residuals are adjusted by applying weights calculated using 
the Huber or Tukey method. This adjustment aims to produce weighted residuals, êi =
wi × ẽi, reducing the influence of outliers in the analysis and enhancing the accuracy of the 
primary data estimates. 

The fifth stage involves the bootstrap sampling process using the weighted residuals to 
generate bootstrap-based confidence bands. Table 2 presents an algorithm for constructing 
prediction confidence bands in local polynomial regression using the bootstrap residual 
percentile approach. 

The theoretical basis of the Bootstrap Confidence Band in Equation (12) is summarized in 
the following theorem, which rigorously demonstrates the convergence property of the 
double bootstrap residuals. This result ensures the statistical validity of the confidence bands 
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generated by the algorithm, especially in achieving the specified coverage probability (CP) as 
the number of bootstrap iterations approaches infinity. 

Table 2. Algorithm for constructing prediction confidence bands in local polynomial 
regression using the bootstrap residual percentile approach. 

Bootstrap Confidence Band Algorithm 

1. Determining the first bootstrap sample, ŷi
∗ = ŷi + êi

∗, where êi
∗ is a resampling with replacement from 

the sequence ê1, ê2, … , ên; 

2. Matching the first bootstrap sample to Equation (6) to get the second bootstrap sample, ŷi
∗∗, for i =

1,2, … , n; 

3. Performing double bootstrap calculations, êi
∗∗ = ŷi

∗ − ŷi
∗∗ and normalizing, ẽi

∗ = êi
∗∗ −

∑ êj
∗∗n

j=1

n
, for i =

1,2, … , n; 

4. Carry out independent random sampling with returns from ẽi
∗ to get 𝐞∗∗ = (e1

∗∗, e2
∗∗, … , en

∗∗); 

5. Repeat the first step to the fourth step B times to obtain the sequence of bootstrap sample vectors,  

𝐞∗∗1, 𝐞∗∗2,⋯ 𝐞∗∗B; 

6. Determine the bootstrap estimate of the Prediction Confidence Band (PCB) for each data point, x𝑖 using 
Equation (12), 

PCB: (yi): ŷi + Ĥ(α 2⁄ )
−1 (ei) ≤ yi ≤ ŷi + Ĥ(1−α 2⁄ )

−1 (ei)                                (12) 

 where Ĥ(1−α 2⁄ )
−1 (ei) = ei

∗∗B(1−α 2⁄ )
 is the (1 − α 2⁄ )-th bootstrap percentile of the estimated cumulative 

density distribution.  

 
Theorem. Suppose the double bootstrap estimate for the residual ei is a sequence of 

resampling statistics ei
∗∗1, ei

∗∗2, ⋯ , ei
∗∗B. If the distribution of the resampling statistics is 

approximately a normal distribution with B tending to infinity, then the probability of: 

P(ŷi + H(α 2⁄ )
−1 (ei) ≤ yi ≤ ŷi + H(1−α 2⁄ )

−1 (ei)) → 1 − α, 

where H(1−α 2⁄ )
−1 (ei) = ei

∗∗B(1−α 2⁄ )
 is the (1 − α/2)-th bootstrap percentile of the estimated 

cumulative density distribution.   
Proof of Theorem. Let Hei

 representing the cumulative distribution function (CDF) of the 

bootstrap sample sequence ei
∗∗1, ei

∗∗2, ⋯ , ei
∗∗B. According to the assumption, as B → ∞, the 

distribution of ei
∗∗j

 converges to a normal distribution. Consequently, the empirical CDF Hei
 

asymptotically approximates the true normal CDF, denoted by Hεi
. Since Hei

 is a monotonic 

increasing function, the bootstrap quantile corresponding to 1 − α 2⁄ , i.e., H(1−α 2⁄ )
−1 (εi),   is 

the value that separates the top 1 − α 2⁄  proportion of the bootstrap sample. If εi~N(μ̂, σ̂2), 
the quantile at 1 − α 2⁄  is approximately given by: 

H(1−α 2⁄ )
−1 (εi) ≈ μ̂ + z(1−α 2⁄ )�̂�, 

where μ̂ is the sample mean, �̂�  the sample standard deviation, and z(1−α 2⁄ ) is the standard 

normal quantile. Thus, the probability in the theorem can be written as: 

P(ŷi − H(α 2⁄ )
−1 (εi) ≤ yi ≤ ŷi + H(1−α 2⁄ )

−1 (εi)) = P(−H(α 2⁄ )
−1 (εi) ≤ εi ≤ H(1−α 2⁄ )

−1 (εi)) 

Since Hei
 approximates Hεi

 for large B, it becomes: 

P(μ̂ − z(α 2⁄ )�̂� ≤ εi ≤ μ̂ + z(1−α 2⁄ )�̂�) = P(−z(α 2⁄ ) ≤ (εi − μ̂)/�̂� ≤ z(1−α 2⁄ )) 



Mansyur et al., Adaptive Robust Confidence Bands on Local Polynomial Regression Using … | 362 

DOI: https://doi.org/10.17509/ijost.v10i2.84323 

p- ISSN 2528-1410 e- ISSN 2527-8045 

since (εi − μ̂)/�̂�~N(0,1), the probability becomes: P(−z(α 2⁄ ) ≤ Z ≤ z(1−α 2⁄ )) = 1 − α, 

where Z is a standard normal random variable. 

3. RESULTS AND DISCUSSION 
3.1. Result 

We use two data types to analyze the adjustment of boundary parameters on Huber and 
Tukey weights based on data characteristics to evaluate the application of the robust 
bootstrap confidence band technique. The first source is empirical data on the number of 
domestic flight passengers at Kualanamu Airport from January 2006 to March 2024. This local 
data was chosen because it captures fluctuations often driven by seasonal factors, long-term 
trends, and anomalies such as the COVID-19 pandemic. The second source is computer 
simulation data designed to simulate extreme conditions by adding outliers in a controlled 
manner. The addition of outliers aims to evaluate how boundary parameters adjust to the 
gradually increasing level of data deviation. 

3.1.1. Real Data 

Figure 1 presents two main visualizations illustrating the process and results of robust local 
polynomial regression analysis with a polynomial degree p = 2. Figure 1a shows the search 
for optimal smoothing parameters using the Cross-Validation method, while Figure 1b depicts 
the distribution of residuals derived from the applied regression model.  

 

Figure 1. Smoothing parameter search and residual histogram using robust local polynomial 
regression. 

Figure 1a depicts the relationship between the smoothing parameter () and the Cross-

Validation function CV(). The blue circles on the curve mark the smoothing parameter values 

that achieve an ideal balance between bias and variance, optimal is 0.28. Values of  close to 
0 increase variance and risk of overfitting as the model becomes too responsive to small data 

fluctuations. Values of  close to 1 reduce variance but risk over-smoothing, which can hide 
critical local variations in the data. The search for smoothing parameters uses the Cross-
Validation function in Equation (8), which ensures that the selection process is based on the 
intrinsic characteristics of the dataset and remains unbiased. This approach minimizes 
subjective decisions and allows the model to adapt effectively to the underlying data 
structure. 
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Figure 1b depicts the distribution of residuals through a histogram, which shows the 
difference between the actual values (yi) and the predicted values from the robust local 
polynomial regression (ŷi) of the model. Most residuals are concentrated around 0, indicating 
that the model predictions are generally accurate. We include the red curve showing the 
normal distribution as a reference for evaluating the residuals. However, some extreme 
residuals (outliers) are visible at both ends of the histogram, highlighting the importance of 
adjusting the boundary parameters in the Huber or Tukey weighting function to reduce the 
influence of these anomalies. 

We apply the confidence band technique proposed in the previous section using a sample 
size of B = 100,000 and an optimal smoothing parameter α𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 0.28. Consideration of 

the bootstrap sample size B = 10,000 is used to obtain an ideal bootstrap estimator [5]. In 
addition, a tolerance of 0.001 ensures that the optimal cutoff is precisely selected according 
to the nominal CP target of 0.95. This approach ensures the reliability and precision of the 
resulting confidence bands, even under difficult data conditions. Figure 2 provides two main 
views explaining the relationship between cutoff and CP and PCB using the optimal cutoff of 
the Huber and Tukey methods on passenger data.  

 

Figure 2. Coverage probability and bootstrap confidence bands using Huber and Tukey 
methods on passenger count data. 

In Figure 2a, the relationship between the cutoff value and CP is depicted while both 
methods converge to the nominal CP. Huber's process can get closer to the nominal CP with 
a relatively low cutoff value due to its ability to deal with moderate outliers. Tukey's method 
needs a higher cutoff value to get to the same CP level as Huber's method, which shows how 
Tukey's method is more conservative in dealing with extreme outliers. These differences show 
that optimizing the cutoff value is crucial in enhancing the robustness and the precision of 
statistical modeling, mainly where there are differences in data quality. Huber's curve 
(marked by the blue circle) shows that CP increases with the increasing cutoff value until it 
reaches the nominal CP target (marked by the red dashed line). The optimal cutoff for Huber 
is 4.49, appears sharper at the beginning, and shows a better response to cutoff changes in 
the early stage. Tukey's curve (marked by the orange triangle) shows CP, which increases 
more slowly than Huber's. The optimal cutoff for Tukey is 7.25, which is higher than Huber's 
in achieving the CP target. Achieving Tukey's optimal limits indicates greater tolerance for 
extreme outliers. 
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Figure 2b shows the bootstrap estimates for PCB from the two methods, applying the 
optimal cutoff. The bootstrap estimates for the confidence bands from Huber's method tend 
to be narrower, reflecting its sensitivity to data more profound in the principal distribution. 
In contrast, Tukey's method produces wider bands due to its conservative approach to 
excluding outliers. The difference between the two methods suggests a trade-off between 
precision and robustness in outlier management. 

3.1.2. Artificial Data 

In this section, we want to reinforce the results achieved on actual data through artificial 
data. The design for predictor X uses a set of values evenly distributed in the range [−10,10] 
with a total of n = 100 data points. The generation of response data Y uses a sine function (X) 
added with a slight Gaussian noise with low variance, Y~N(0, 0.1), to reflect the variance in 
real-world data. Then, the simulation controls outliers starting from 0% (no outliers), 5%, 10%, 
and 15%. These outliers are simulated by adding a large-scale Gaussian noise, N(0,25), to the 
response values  Y at several randomly selected indices. 

Table 3 presents the optimal smoothing parameters with the polynomial degree p = 2 
based on artificial data. In data without outliers, the α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  value = 0.2 indicates minimal 

smoothing needs because the data is considered clean and homogeneous. The minimal CV(α) 
value, which is 0.0113, reflects excellent prediction quality because there is no interference 
from outliers. When the percentage of outliers increases to 5%, the α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  value increases 

to 0.37. This increase indicates that the model requires more significant smoothing to 
suppress the impact of outliers. The minimum CV(α) value also increases to 0.557, indicating 
that the prediction quality begins to decline due to outliers in the data. At an outlier 
percentage of 10%, the α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  value decreases again to 0.24, while the minimum CV(α) 

value increases significantly to 1.719. The decrease in the α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  value reflects the model's 

efforts to adapt to more complex data due to outliers that begin to dominate. The minimum 
CV(α) increase confirms that outliers significantly affect prediction quality. At the highest 
outlier level, 15%, the α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  value decreases further to 0.22, while the minimum CV(α) 

value reaches 2.812. The decrease in α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  indicates that the model tries to be more 

sensitive to the primary data, although the disturbance from outliers still reduces the overall 
prediction quality. The simulation results reflect that outliers affect the optimal smoothing 
parameters and the prediction quality. The α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  value changes adaptively to balance 

smoothing and sensitivity to outliers. 

Table 3. Optimal smoothing parameters using robust local polynomial regression 

 Outlier Percentage 

0% 5% 10% 15% 
α𝑜𝑝𝑡𝑖𝑚𝑎𝑙  0.2000 0.370 0.240 0.220 

Minimum(CV(α)) 0.0113 0.557 1.719 2.812 

 

We use the results in Table 3 to perform simulations to estimate robust bootstrap 
confidence bands. The simulations use B = 10,000 bootstrap samples to assess the distribution 
of the weighted residuals. With this distribution, bootstrap confidence bands are calculated 
based on the upper and lower quantiles of the residuals. These confidence bands are then 
used to calculate CP, the proportion of data within the band. Using this approach, we can 
evaluate the performance of the robustness method and determine the optimal threshold 
that ensures CP is close to the nominal target of 0.95 with an adjusted tolerance. The 
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simulation results are visualized to facilitate the interpretation of the relationship between 
the threshold, CP, and confidence band. 

Figure 3 provides two main perspectives on how the optimal threshold affects the 
performance of robust analysis in the face of outliers. Figure 3a depicts the estimation results 
and uncertainty on outliers-free data, while Figure 3b shows the interaction between the 
threshold and CP on data contaminated by 5% outliers. Thus, this figure emphasizes the 
importance of choosing the right optimal threshold and robust strategy to achieve accurate 
and reliable estimation. 

 

Figure 3. Bootstrap confidence bands without and 5% outliers. 

Figure 3a applies a non-robust local polynomial regression model because the artificial 
data does not contain outliers, or the percentage of outliers is 0%. The black primary curve 
shows the model prediction results, which follow a sine function pattern considering the 
existing noise. The two blue and red curves represent the lower and upper limits of the 
confidence bands, respectively, which are calculated based on the bootstrap approach. Most 
of the data are within the confidence bands, reflecting that the model can capture the main 
characteristics of the data distribution. Some data points are outside the band boundaries; 
above and below represent noise (uncertainty). With a confidence level of 0.05, the bootstrap 
confidence bands provide a CP of 0.95, which matches the nominal coverage probability. For 
comparison, the naïve bootstrap approach also provides a CP of 0.95, independent of the 
cutoff value (c), as expected in scenarios without outliers. 

Figure 3b visualizes the relationship between the cutoff value and CP when the data 
contains 5% outliers. The red horizontal line shows the nominal target CP of 0.95. The blue 
and orange lines depict the performance of the Huber and Tukey methods in achieving the 
target CP, respectively. The Huber method achieves the target CP with an optimal cutoff of 
5.41, while the Tukey method fails to reach the nominal coverage in the given cutoff domain. 
We conclude that the Huber method shows its sensitivity to moderate outliers. That is, the 
Huber method does not directly ignore moderate outliers but only reduces the contribution 
of moderate outliers to the model proportionally. In contrast, the Tukey method requires a 
higher cutoff to achieve the target CP, reflecting its more conservative approach to dealing 
with extreme outliers. That is, the Tukey method has a strict policy against extreme outliers. 
Once a residual passes the cutoff, the outlier is considered “noise” or irrelevant error and 
removed from the analysis (weighted zero). 

We increase the cutoff domain for cases where the data contains 10% and 15% outliers in 
the hope that the Tukey method can achieve the target CP. Figure 4 presents an in-depth 
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analysis of the relationship between the cutoff value and CP with outliers in the data. Figure 
4a shows where 10% of the data contains outliers, while Figure 4b illustrates the situation 
with 15% outliers. Both figures provide a comprehensive overview of the performance of the 
Huber and Tukey methods in achieving a nominal CP of 0.95. 

 

Figure 4. Coverage probability using the Huber and Tukey methods with 10% and 15% of 
data containing outliers. 

In Figure 4a, Huber's method demonstrates its ability to achieve nominal CP quickly with a 
relatively low threshold. That is, Huber's method reflects its efficiency in balancing sensitivity 
to the underlying data while handling moderate outliers. In contrast, Tukey's method requires 
a higher threshold to achieve the target CP. Tukey's method takes a more conservative 
approach to handling extreme outliers, prioritizing protection against distortion even at the 
expense of a slower CP achievement rate. 

Figure 4b shows how both methods adapt to an increase in the number of outliers to 15%. 
Huber's method maintains its relative efficiency despite requiring a slightly higher cutoff than 
in the 10% outlier condition. On the other hand, Tukey's method shows more significant 
fluctuations in CP before finally approaching the nominal value. The Tukey method is more 
sensitive to the high proportion of extreme outliers in the data. 

3.2. Discussion 

The proposed robust bootstrap confidence band technique contributes to developing 
robust statistical methods through Huber and Tukey approaches. We demonstrate the 
technique's ability to deal with data with outliers and noise, challenges often encountered in 
real-world data analysis. In comparison, Huber's approach is more sensitive to moderate 
outliers, while Tukey's method is conservative for dealing with extreme outliers. The 
simulation findings show that robust processes are adaptable to different data conditions and 
present the right strengths for various analysis needs for the following applications. 

One of the key aspects of this proposal is the selection of optimal smoothing parameters, 
which significantly affect the bias and variance of the estimates. Artificial data simulations are 
used to evaluate the effect of the proportion of outliers. At the same time, additional 
validation is performed on real-world data, such as the number of airline passengers at 
Kualanamu International Airport. This approach confirms that the robust method is suitable 
for controlled data conditions and effective in handling complex data. 
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The bootstrap confidence bands results indicate that the Huber method, with its narrower 
bands, effectively captures the essential structure of the data. This equilibrium between 
precision and robustness is crucial in applications that must balance high estimation accuracy 
with managing extreme data variations. 

We also want to highlight some limitations, especially regarding the sensitivity of the 
choice of cutoff and the number of bootstraps used. Traditional approaches, such as naïve 
bootstrapping, tend not to perform well in preserving CP on data with outliers. Naïve 
bootstrapping often fails to maintain estimation accuracy because it does not integrate 
adaptive weights that can handle outliers. In this context, naïve bootstrap methods, described 
by [13], can produce unreliable estimates, particularly when the data contains outliers. This 
is because naïve bootstrap tends to sample more outliers than the original data, distorting 
the empirical distribution. In contrast, robust methods such as Huber and Tukey show 
superiority in handling complex data with disturbed distributions. 

4. CONCLUSION 
 

The search for optimal smoothing parameters using Cross-Validation shows that the optimal 

value varies depending on the level of outliers in the data. In a dataset without outliers, optimal 

approaches 0, while in a dataset with a high proportion of outliers, optimal increases to balance 

bias and variance. The combination of applying optimal with an adaptive robust approach to 
construct bootstrap residual confidence bands, using domestic passenger data from 
Kualanamu International Airport, shows that Huber weights provide narrower confidence 
bands with probability coverage close to the nominal target (95%), even under conditions 
with fluctuations caused by the COVID-19 pandemic. In contrast, Tukey weights produce 
wider bands due to their more conservative approach in handling outliers.  

Simulations of artificial data demonstrate the adaptability of the method to outlier 
proportions up to 15%. Huber weights show better sensitivity to moderate outliers, while 
Tukey weights are more effective in handling extreme outliers. The difference in optimal 
threshold values between Huber and Tukey weights is evident in achieving the nominal 
coverage probability. With a lower threshold, Huber weights achieve nominal coverage faster 
than Tukey weights. However, Tukey weights offer higher tolerance to extreme outliers, 
although they require a higher threshold to achieve target coverage.  

The construction of residual bootstrap confidence bands in local polynomial regression, 
through a robust adaptive approach integrating Tukey and Huber weights, demonstrates its 
effectiveness in handling data with varying degrees of outliers. This study shows that the 
robust residual bootstrap method, which separately examines the roles of Tukey and Huber 
weights, can handle complex data with noise and outliers. Applying this robust adaptive 
approach significantly contributes to statistics, especially in nonparametric statistics, for 
robust prediction confidence bands under various data conditions. Furthermore, the 
consideration of computational time efficiency is crucial, especially when dealing with large 
data sets or complex data structures. This approach enables accurate and reliable analysis of 
real-world data developments in various fields such as transportation, finance, healthcare, 
and others. 
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