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A B S T R A C T   A R T I C L E   I N F O 

In the era of Industry 4.0, ensuring product quality through 
accurate and efficient defect detection has become essential 
because traditional manual inspection methods are often 
time-consuming and prone to inconsistency. This study aims 
to enhance defect detection in smart manufacturing by 
proposing a hybrid deep learning architecture that combines 
ConvNeXt and stacked autoencoders. The method leverages 
ConvNeXt for robust feature extraction and stacked 
autoencoders for efficient data reconstruction and 
classification. The model was trained and tested on real-
world industrial image datasets involving damaged and 
intact packaging. Results demonstrate that the proposed 
method outperforms conventional convolutional neural 
networks in both detection accuracy and processing 
efficiency because of its ability to extract deep spatial and 
semantic features. This research contributes to the 
advancement of autonomous quality control systems in 
smart manufacturing. Its impact lies in reducing human 
dependency, improving inspection accuracy, and fostering 
the development of intelligent, self-regulating production 
lines. 
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1. INTRODUCTION 
 

 

Advanced technologies such as information technology (IT), Internet of Things (IoT), 
artificial intelligence (AI), augmented reality (AR), virtual reality (VR), sensor networks, 
computerized controls, and big data drive manufacturing companies to work in a manner to 
satisfy the necessities of automatic manufacturing systems [1]. Many reports regarding this 
matter have been well-developed (Table 1).  

Table 1. Previous studies on advanced technology to support industry 4.0. 

No Topic Title Ref. 
1. Information 

Technology (IT) 
Theoretical foundations of the creation of a curriculum in higher 
project IT in education 

[2] 

2. Improving training of modern leaders utilizing IT in the administration 
of the higher education system 

[3] 

3. The paradigm of curriculum differentiation in higher IT education [4] 
4. Smart city and society 5.0: Involvement of information technology in 

the development of public service systems in Indonesia 
[5] 

5. Internet of things-based child stunting detection system for 
supporting sustainable development goals 

[6] 

6. Predictive deep learning models to identify traumatic brain injuries 
using MRI data 

[7] 

7. Enhancing digital literacy and teacher-preneurship through a critical 
pedagogy-based training platform 

[8] 

8. Electric vehicle consumption dataset tailored to Malaysian situation 
and implemented using rapid miner auto-model 

[9] 

9. Emerging applications of iot, machine learning, virtual reality, 
augmented reality and artificial intelligent in monitoring systems: a 
comprehensive review and analysis 

[10] 

10. Internet of 
Thing (IoT) 

Mesh network based on MQTT broker for smart home and iiot factory [11] 
11. Easy-mushroom mobile application using the Internet of Things (iot) [12] 
12. Greening the internet of things: A comprehensive review of 

sustainable IOT solutions from an educational perspective 
[13] 

13. Internet of things-based child stunting detection system for 
supporting sustainable development goals 

[14] 

14. Emerging applications of iot, machine learning, virtual reality, 
augmented reality and artificial intelligent in monitoring systems: a 
comprehensive review and analysis 

[15] 

15. Emerging trends in technology: insights across machine learning, 
digitalization, and industry applications 

[16] 

16. Internet of things for monitoring and optimisation of stand-alone 
systems in rural area: an experimental case 

[17] 

17. Mobiledfu: classification of diabetic foot ulcer infection on the edge [18] 
18. Artificial 

Intelligence (AI) 
Chatbot artificial intelligence as educational tools in science and 
engineering education: A literature review and bibliometric mapping 
analysis with its advantages and disadvantages 

[19] 

19. How bibliometric analysis using vosviewer based on artificial 
intelligence data (using researchrabbit Data): Explore research trends 
in hydrology content 

[20] 

20. Artificial intelligence (AI)-based learning media: Definition, 
bibliometric, classification, and issues for enhancing creative thinking 
in education 

[21] 

21. Trends in the use of artificial intelligence (AI) technology in increasing 
physical activity 

[22] 
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Table 1 (continue). Previous studies on advanced technology to support industry 4.0. 

No Topic Title Ref. 
22.  Bibliometric analysis of research trends in conceptual understanding 

and sustainability awareness through artificial intelligence (AI) and 
digital learning media 

[23] 

23. The future of learning: ethical and philosophical implications of 
artificial intelligence (AI) integration in education 

[24] 

24. University students’ awareness of, access to, and use of artificial 
intelligence for learning in Kwara State 

[25] 

25. Bibliometric analysis on artificial intelligence research in Indonesia 
vocational education 

[26] 

26. Primary education undergraduates’ competency in the use of artificial 
intelligence for learning in Kwara State 

[27] 

27. The digital frontier: AI-enabled transformations in higher education 
management 

[28] 

28. The role of chatgpt AI in student learning experience [29] 

29. Sensor Monitoring of air quality with satellite-based sensor: The case of four 
towns in Southeast, Nigeria 

[30] 

30. Vehicle-tracking mobile application without a GPS sensor [31] 
31. Securing wireless sensor networks, types of attacks, and 

detection/prevention techniques: An educational perspective 
[32] 

32. Graphene-based electrochemical sensors for heavy metal ions 
detection: A comprehensive review 

[33] 

33. Internet of things-based child stunting detection system for 
supporting sustainable development goals 

[34] 

34. Emerging trends in technology: insights across machine learning, 
digitalization, and industry applications 

[35] 

35. Interference mitigation for dynamic user connectivity using sdn and 
radio resource management in cell-less networks 

[36] 

36. Internet of things for monitoring and optimisation of stand-alone 
systems in rural area: an experimental case 

[36] 

37. Mobiledfu: classification of diabetic foot ulcer infection on the edge [38] 
38. Development of augmented reality application for exercise to 

promote health among elderly 
[39] 

39. Application of augmented reality technology with the fuzzy logic 
method as an online physical education lecture method in the new 
normal era 

[40] 

40. How to create augmented reality (AR) applications using unity and 
vuforia engine to teach basic algorithm concepts: Step-by-step 
procedure and bibliometric analysis 

[41] 

41. Emerging applications of iot, machine learning, virtual reality, 
augmented reality and artificial intelligent in monitoring systems: a 
comprehensive review and analysis 

[42] 

42. Emerging trends in technology: insights across machine learning, 
digitalization, and industry applications 

[43] 

43. Let's immerse in metaverse: overview, challenges, and stumeta 
framework for successful implementation 

[44] 

44. Development of science virtual laboratory (scivlab) to develop critical 
thinking skills in elementary schools on the topic of changes in the 
state of substances 

[45] 

45. Usability assessment of flipo-ar: navigating learning in a vuca world 
with augmented reality 

[46] 

46. Virtual Reality 
(VR) 

The use of virtual reality as a substitute for the pre-school students’ 
field trip activity during the learning from home period 

[47] 
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Table 1 (continue). Previous studies on advanced technology to support industry 4.0. 

No Topic Title Ref. 
47.  Colleges of education lecturers’ attitude towards the use of virtual 

classrooms for instruction 
[48] 

48. Students’ learning experiences and preference in performing science 
experiments using hands-on and virtual laboratory 

[49] 

49. The effectiveness of using a virtual laboratory in distance learning on 
the measurement materials of the natural sciences of physics for 
junior high school students 

[50] 

50. Perception of early childhood education lecturers on the use of virtual 
learning 

[51] 

51. Lecturers perceived proficiency in the use of virtual classrooms for 
instruction in colleges of education 

[52] 

52. Development and acceptability of virtual laboratory in learning 
systematics 

[53] 

53. Utilization of virtual reality chat as a means of learning 
communication in the field of education 

[54] 

54. The effectiveness of using a virtual laboratory in distance learning on 
the measurement materials of the natural sciences of physics for 
junior high school students. 

[55] 

55. Developing an identification and testing system for cardiac surgical 
instrument capabilities 

[56] 

56. Emerging applications of iot, machine learning, virtual reality, 
augmented reality and artificial intelligent in monitoring systems: a 
comprehensive review and analysis 

[57] 

57. Emerging trends in technology: insights across machine learning, 
digitalization, and industry applications 

[58] 

58. Let's immerse in metaverse: overview, challenges, and stumeta 
framework for successful implementation 

[59] 

59. Development of science virtual laboratory (scivlab) to develop critical 
thinking skills in elementary schools on the topic of changes in the 
state of substances 

[60] 

 
With the appearance of the Fourth Industrial Revolution (Industry 4.0), the concept of 

product quality control has gained high attention in industrial manufacturing. One of the 
important research directions in the field of quality control, improving the detection of 
product defects during the manufacturing process. Delivering products without defects is 
always of major concern to top decision-makers in production companies. Faults and 
imperfections like internal holes, abrasions, and also scratches might occur in the production 
of products. In such cases, the quality of products will affect production efficiency, since 
products with poor quality considered a waste of raw materials and this is costs [61]. 
Automatic defect-detection systems utilizing advanced technologies such as advanced 
sensors and artificial intelligence have noticeable advantages over the time-consuming 
traditional manual detection [62]. Besides, the performance of human inspection gets very 
exhausted with repetitive tasks and hence these tasks are typically very labor-intensive. 
However, automatic detection of effective visual defects in the product, which intends to 
identify a possible defective area of a product image used and then categorize these images 
into defect and defect-free, appears as a solution to the problem [63]. 

Artificial Intelligence (AI), in particular Machine Learning (ML) as well as Deep Learning 
(DL), can both be defined as algorithms consisting of multiple processing layers and can learn 
from data. In other words, algorithms take input data, train themselves to observe patterns 
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found in the data, and afterward predict the output for a new set of data [64-66]. In terms of 
support in decision-making, ML and DL algorithms are revealing massive impending in the 
scrutiny of large amounts of data, currently readily available, aiming to enhance the efficiency 
of the proposed algorithm [67]. With the significant enhancement of the Graphical Processing 
Units (GPU) computing aptitudes, DL approaches are mostly known to have remarkable 
rewards, in terms of the capability to conduct multivariate, high dimensional data and hence 
can extract concealed relationships within the specified data. Therefore, these algorithms 
appeared to be one of the most dominant tools in several applications and wide field of 
research [68-69]. 

Various research and studies have been performed on product defect detection in 
different industrial sectors such as semiconductor, carpet, steel, and fabric manufacturing 
based on DL algorithms. For instance, [63] presented an application of Deep Neural Network 
(DNN) collective with a high-resolution optical quality camera to boost the precision of an 
industrial visual assessment in the printing process. To show the role of DL algorithms in 
enabling production companies to transfer to smart manufacturing, [70] proposed a visual 
quality control system using DL methods. A camera was placed over the production line. Then, 
the image of the product is sent to the algorithm to decide whether the product is "okay" or 
"not okay". To improve the productivity of the textile industry, [71] proposed an EfficientDet-
D0 algorithm for a fabric defect detection system. Besides, [72] proposed a one-class 
classification (OCC) for carpet defect detection systems. The proposed system is trained only 
with normal samples whereas, throughout the test phase, both normal and defective images 
are employed. Three models are used. Convolutional autoencoder is first used as a hidden 
feature extractor. Therefore, the extorted feature vectors are then fed into the dimensionality 
reduction process by utilizing the method of principal component analysis (PCA). Finally, the 
training of the one-class classifier called Support Vector Data Description (SVDD) is performed 
using the above-mentioned resulting reduced-dimensional data. 

All these studies show the capability of DL algorithms to settle independently about 
product quality devoid of human participation. However, improving the efficiency and 
exploring the capability of other DL algorithms for better performance has been an ongoing 
endeavor. Due to its higher accuracy and balanced precision and recall metrics as compared 
to other DL algorithms, in this paper, an improvement model of ConvNeXt with Stacked 
Autoencoders (ConvNeXt-SAEs) is proposed for product defect detection systems. 

2. DEFECTS DETECTION SYSTEM 
 

Most recently defect-detection system is an interesting topic in many fields, among them 
industries. It is widely used in production companies to ensure the quality of the product. 
Defects such as internal holes, abrasions, and even scratches might occur in the production 
of products. Therefore, a product defect detection system refers to the detection tools that 
are used to identify the external (i.e. surface) and/or internal defects of products [73]. 
Recently, automated defect-detection system utilizing integrated technologies such as image 
processing, pattern recognition, and DL algorithms has a broadly applied over manual 
detection to improve the performance of defect-detection systems [74]. A product defect 
detection system based on DL algorithms is built upon the data that is collected from the 
production process. Then, by extracting patterns from the data, DL algorithms can be used to 
detect whether the product is "okay" or "not okay". This process works as a decision-making 
for quality-enhancing measures [75]. Therefore, using an automated defect detection system 
can reduce costs and improve the efficiency of the production process. It also is considered 
one of the requirements for the transformation to the smart manufacturing industry [62]. As 



Hasan et al., Enhanced Product Defect Detection in Smart Manufacturing Using … | 302 

DOI: https://doi.org/10.17509/ijost.v10i2.82229 

p- ISSN 2528-1410 e- ISSN 2527-8045 

one of the important research directions in the field of improving the performance of the 
automated defect detection system, is improving the software and algorithms in image 
processing. In this direction, a significant amount of interest has been increased in proposing, 
exploring, and evaluating modern DL architectures. 

3. METHODS 
 

To satisfy the requirement of the transition to smart manufacturing systems, we proposed 
a DL algorithm named ConvNeXt Stacked Autoencoder for product defect detection systems. 
In the literature, the performance of the ConvNeXt and the Stacked Autoencoders networks 
has been examined separately. In this research, the advantages of the two methods are 
combined and applied to the defect-detection system. 

3.1. ConvNeXt 

Self-attention-based deep learning methods are approaches that have many application 
areas such as image and language processing, and and temporal prediction models. In these 
approaches, the inputs focus on calculating the relationships between different regions. Self-
attention-based methods aim to emphasize the features that are significant for the target 
outputs. These methods consider self-attention matrices as the main components. 
Relationship calculations are performed with these matrices and the relationship calculations 
are associated with the weights in the feature maps [76]. The self-attention-based method 
that can process images is the ConvNeXt model [77]. ConvNeXt is a pure convolutional neural 
network (CNN) built entirely from standard convolutional modules combined with principles 
of transformer network (i.e. vision transformer and the swing transformer) [78] The 
motivation behind ConvNeXt was to reexamine the design space of CNN network architecture 
and investigate the restrictions of what an untainted convolutional network can achieve. The 
researchers progressively modernized a standard ResNet towards an image transformer 
design and discovered numerous key components that contributed positively to the 
performance difference along the system. Therefore, the result of this discovery is a kind of 
pure convolutional model called ConvNeXt [79]. Built totally from standard convolutional 
modules, ConvNeXt competes positively with transformer-based models in COCO detection 
along with ADE20K segmentation while maintaining the simplicity and efficiency of standard 
convolutional networks. 

The ConvNeXt model has approximately the same number of parameters and memory 
usage rate as the reference methods, but certain modules have been simplified with this 
model. The ConvNeXt model, whose layer principle is shown in Figure 1, first processes the 
input with a convolution layer. Then, a linear normalization process is applied to the features 
created by these convolution operations. With linear normalization, the convolution layer 
outputs are brought to a certain range. The last function of the ConvNeXt block is the 
activation of the Gaussian Error Linear Unit (GeLU) [80]. This activation process compresses 
the outputs and completes the transformation process. The layers and mathematical 
formulations of ConvNeXt are described as follows. 
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Figure 1. ConvNeXt block diagram. 

(i) Convolution: ConvNeXt relies on the basic convolution operation for image processing, 
where each output is computed as a weighted sum of neighboring points (see equation 
(1)): 

Yi,j=∑x⋅w              (1) 

(ii) Layer Normalization (LN): Layer normalization is used to stabilize the training process 
by normalizing the data across different feature channels (see equation (2)): 

𝐿𝑁(𝑥) =
𝑥−𝑢

√𝜎22
−𝜖

. 𝛾 − 𝛽           (2) 

where 𝑢, 𝛽 , 𝛾 and 𝜎 are the values learned during training. 
(iii) Deepwise Convolution: In this process, a separate convolution is applied to each 

channel, which reduces the computational volume (see equation (3)): 

𝑦𝑖,𝑗
𝑐 = ∑ 𝑥. 𝑤𝑐             (3) 

where 𝑐 denotes the channel number. 
(iv) Pointwise Convolution: A 1x1 convolution that combines information from different 

channels (see equation (4)): 

𝑦𝑖,𝑗 = ∑ 𝑥𝑐 . 𝑤𝑐            (4) 

(v) Stochastic Depth: During training, some remaining connections are randomly skipped 
with probability 𝑝. Equation (5) is in the following: 

𝑦 = {
𝑅𝑒𝑠𝑏𝑙𝑜𝑐𝑘(𝑥) + 𝑥  𝑤𝑖𝑡ℎ 𝑝

𝑥 𝑤𝑖𝑡ℎ (1 − 𝑝)
         (5) 



Hasan et al., Enhanced Product Defect Detection in Smart Manufacturing Using … | 304 

DOI: https://doi.org/10.17509/ijost.v10i2.82229 

p- ISSN 2528-1410 e- ISSN 2527-8045 

(vi) GELU activation function: It is a smooth activation function that is better than ReLU (see 
equation (6)): 

GELU(x)=x⋅Φ(x)            (6) 

where Φ(x) is the cumulative distribution function of Gauss. 
ConvNeXt combines these operations to enhance efficiency and performance, by blending 

traditional neural network techniques with some approaches inspired by the modern 
Transformers architecture. 

3.2. Stacked Autoencoders 

Stacked autoencoders (SAEs) are one of the artificial neural network models that have an 
important place in the deep learning literature [81]. This model is generally used to provide a 
hierarchical feature extraction for the representation of input data. It consists of a set of 
autoencoders, each of which is trained separately and then combined. Autoencoders perform 
a learned encoding operation to represent the data in a lower dimensional space and then 
aim to reconstruct this representation from the original data. Simple autoencoder 
architecture is shown in Figure 2 [82]. Autoencoder neural network essentially consists of two 
elements: an encoder and a decoder. Moreover, it renovates the specified input data into 
features using the encoder and hence reconstructs the input data by renovating these 
features back to its raw data throughout the decoder [83]. Multiple autoencoders are related 
to each other to form a stacked autoencoder architecture. A stacked autoencoder allows 
learning higher-level features, each derived from the previous one. This model generally 
provides effective results on large and complex data sets and is widely used in feature 
extraction, dimensionality reduction, and classification operations [84]. It contains many 
hyperparameters in a stacked auto-encoder structure. These hyperparameters directly affect 
the performance of the established network. High success in a created architecture can be 
achieved by optimizing these parameters specific to the problem. 

 

Figure 2. Auto-encoder architecture. 
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Stacked Autoencoders are a type of neural network used to learn hidden representations 
of data. Stacked autoencoders rely on stacking several layers of autoencoders to arrive at 
more complex representations, with each layer trained sequentially. The basic structure and 
mathematical equations for the stacked autoencoder network are described as follows: 
(i) Encoding stage. The input x in the first layer is transformed by an activation function to 

generate the first hidden representation (see equation (7)). 

ℎ(1) = 𝑓(𝑤1. 𝑥 + 𝑏1)           (7) 

where 𝑤1 is the specified weight matrix related to the first layer, 𝑏1is the shift vector 
(bias), and 𝑓 is the activation function such as a ReLU or Sigmoid function. 

(ii) Decoding. The hidden representation ℎ(1) is passed through the next layer to reconstruct 
the original input (see equation (8)) 

�̂� = 𝑔(𝑤2. +ℎ(1) + 𝑏(2))           (8) 

where 𝑤2 is the specified weight matrix for the second layer, 𝑏(2) is the bias vector for 
the second layer, and 𝑔 is the specified activation function used in decoding. 

(iii) Cost Function. The difference between the original input 𝑥 and the reconstructed input 
�̂� is measured using a cost function, such as the Mean Squared Error (see equation (9)): 

𝐿(x, �̂�) =
1

𝑛
∑(𝑥𝑖 − �̂�𝑖)2           (9) 

where 𝑛 is the number of data samples. 
(iv) Stacked Layer Training. When training a stacked autoencoder, several layers are stacked 

so that the hidden layer is used as the input to the next layer, so the autoencoder is 
stacked as follows (see equation (10)): 

ℎ(2) = 𝑓(𝑤3. ℎ1 + 𝑏3)                     (10) 

Then the encoder is decoded again to obtain the reconstructed input, and this process is 
repeated with each added layer. 

3.3. Proposed ConvNeXt Stacked Autoencoder 

A ConvNeXt Stacked Autoencoder (SAE) is an advanced neural network that integrates 
ConvNeXt, a modernized convolutional architecture, with a stacked autoencoder . ConvNeXt 
acts as the encoder, leveraging its convolutional layers to extract hierarchical, high-quality 
features from images, benefiting from modern techniques like large kernel sizes and layer 
normalization . The stacked autoencoder architecture allows for unsupervised learning, 
reducing dimensionality by compressing the input data into a latent space and then 
reconstructing it. By attaching a classifier after encoding, this architecture excels in image 

classification, especially where feature extraction and representation learning are critical. This 
combination enables improved accuracy and efficiency in image classification tasks compared 
to traditional CNN autoencoders, owing to ConvNeXt's improved feature extraction 
capabilities. The block diagram of the proposed method is shown in Figure 3. The steps of the 
ConvNeXt-SAEs algorithm are described in Algorithm 1 in Table 2. 
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Figure 3. ConvNeXt-SAEs block diagram. 

Table 2. Algorithm 1 relating to ConvNeXt-SAEs algorithm steps. 

Algorithm 1. ConvNeXt-SAEs algorithm steps 

1. Data preparation: 

• Take a set of images {X} = {x1, x2, ..., xn}, and each image xi represents a set of pixels in the 
two dimensions (h×w×c), where: h: height of the image, w: width of the image and c: number 
of channels (e.g. 3 for RGB color channels). 

2. Create the model: 

• Inputs: The input image {x} is represented in the dimension (h×w×c) 
3. Encoder: 

• Convolution layer: The convolutional operation is applied to the image using a filter W: 
𝑧𝑖 = 𝑾𝒊 ∗ 𝒙 + 𝒃𝒊 

                 where 𝑧𝑖 is output of convolution, x input image and bi is the bias. 

• Activation: which is a non-linear activation function is applied to the output of the specified 
convolutional layer, such as the ReLU function: 

𝑎𝑖 = max (0, 𝑧𝑖) 
• Pooling: Next, we use Max Pooling to reduce the dimensionality: 

𝑝𝑖 = max (𝑎𝑖) 
                The output size is reduced by taking the maximum value in each window. 
4. Bottleneck : 

• The data is transferred to a fully connected layer. If the previous output has dimension n while 
the fully connected layer has m nodes, this is mathematically represented as follows: 

ℎ = 𝜎(𝑊ℎ 𝑝 + 𝑏ℎ) 
where h is the Compact representation of features, W Fully connected layer weight and σ is 
the Activation function, such as ReLU. 

5. Decoder: 

• Transposed Convolution Layer: To expand the dimensions again, we use UpSampling or 
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Table 2 (continue). Algorithm 1 relating to ConvNeXt-SAEs algorithm steps. 

Algorithm 1. ConvNeXt-SAEs algorithm steps 

• Transposed Convolution. The equation here is similar to the convolution layer but in reverse: 
 𝑦𝑖 = 𝑊𝑖

𝑇 ∗ ℎ + 𝑏𝑖  
 

• Activation: The activation function (such as ReLU) is implemented in the same way: 
𝑎𝑖 = max (0, 𝑦𝑖) 

 

• Upsampling: To expand the image again, the dimensions are increased using expansion 
operations: 

𝑢𝑖 = 𝐮𝐩𝐬𝐚𝐦𝐩𝐥𝐞(𝑎𝑖) 
6. Output Layer: 

• A final convolutional layer to generate the reconstructed image �̂� 
�̂� = 𝜎(𝑊𝑜 ∗ 𝑢 + 𝑏𝑜) 

7. Classification Head: 

• Global Average Pooling: The encoder output is passed to the Global Average Pooling layer which 
collects information from each channel: 

𝑔 =
1

𝑛
 ∑ (ℎ𝑖)𝑛

𝑖=1  

• Classification layer: The result is passed to a fully connected layer with k nodes (where k is the 
number of classes). 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦g+𝑏𝑦) 

8. Training: 

• Use a loss function such as binary cross-entropy. 

𝐿(�̂�, 𝑦) = − ∑ 𝑦𝑖  log (�̂�𝑖)

𝑘

𝑖=1

 

9. Evaluation: 

• Calculate the accuracy of the model based on the comparison among the predicted results y 
and the final actual results. 

 
3. RESULTS AND DISCUSSION 

 
The series of simulation results that we carried out reflect in part the major aim of the 

proposed ConvNeXt Stacked Autoencoders (ConvNeXt-SAEs) architecture with published data 
from real manufacturing lines in the Kaggle website. The industrial quality control of packages 
dataset contains information about package dimensions, weights, and defect indicators. It is 
used to train machine learning models to predict defects, detect anomalies, or improve 
quality control processes. This dataset is useful in industrial and academic settings to analyze 
and improve packaging standards through data analysis. The data includes images of packages 
from a real manufacturing line. The data is categorized into two types: damaged boxes, which 
contain 200 image files of only damaged boxes; and intact boxes, which contain 200 image 
files of only intact boxes. The data is split into 70% for training and 30% for testing and 
evaluation. Before training the proposed method preprocessing image augmentation 
techniques are used to generate new images from the existing ones hence increasing the used 
data diversity. Figure 4 illustrates the types and the number of layers used in the proposed 
ConvNeXt-SAEs architecture for product defect detection. The model hyperparameters are 
summarized in Table 3. The proposed ConvNeXt-SAEs model evaluation results in terms of 
accuracy and model loss which are shown in Figure 5. 

To validate the effectiveness of the proposed ConvNeXt-SAEs model for product defect 
detection a comparison with conventional ConvNeXt and the traditional CNN models is 
conducted. Both ConvNeXt and CNN methods are trained and evaluated with the same 
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dataset used for evaluating the ConvNeXt-SAEs model with the same parameter settings. The 
evaluation results of the ConvNeXt and CNN models in terms of accuracy and loss are shown 
in Figures 6 and 7, respectively. The obtained results for the proposed ConvNeXt-SAEs, 
ConvNeXt, and CNN models are summarized in Table 3. 

 

Figure 4. The proposed ConvNeXt Stacked Autoencoder architecture. 
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Table 3. Model hyperparameters. 

Parameter Value 
Activation function GeLU /softmax 
Learning Rate 0.01 
Loss function categorical_crossentropy 
Epoch 25 
Batch size 8 
Optimizer ADAM 

 

 

Figure 5. ConvNeXt-SAEs model results. 

 

Figure 6. ConvNeXt model results. 

 

Figure 7. CNN model results. 
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Based on the obtained results, the ConvNeXt achieves higher accuracy by 21% 
improvement compared to traditional convolutional CNN, thanks to architectural 
improvements inspired by Vision Transformers. These include using larger convolutional 
kernels (7x7) to capture more spatial information and replacing the Batch Normalization layer 
with Layer Normalization to improve model stability. It also simplifies the architecture and 
reduces complexity, which reduces overfitting and increases computational efficiency using 
deep convolutions. These improvements allow ConvNeXt to outperform CNNs on tasks such 
as image classification. Moreover, based on the obtained results in Table 4, the ConvNeXt-
SAEs are more effective than ConvNeXt by 7% because of their ability to better extract 
complex features from data. By using multiple layers of encoder and decoder, the model can 
delve deeper into understanding graph representations, which helps improve accuracy in 
image classification or other tasks. It can also teach more complex pattern recognition to the 
hierarchical structure it provides. These features make ConvNeXt-SAEs a preferred choice 
when it comes to achieving higher accuracy in tasks that require deep data analysis. 

Table 4. Model’s results summary. 

Method F-Score loss 

ConvNeXt-SAEs 98.5 0.01 
ConvNeXt 91.3 0.08 
CNN 70.2 0.22 

 

5. CONCLUSION 
 

The recent advancement in the DL methods offers ways for industrial companies to meet 
the requirements of smart manufacturing systems due to their ability to classify and analyze 
the features of the input data. The use of DL algorithms in manufacturing lines has greatly 
decreased human involvement in production for product defect detection. The detection 
approach based on DL algorithms is appropriate to diverse objects and many defect types as 
long as it is trained well depending on the corresponding data. In this context, this paper 
investigates the feasibility of using DL algorithms in automated defect detection systems. The 
ConvNeXt Stacked Autoencoders (ConvNeXt-SAEs) DL algorithm is proposed. ConvNeXt is 
well-known as the most robust model that can balance between precision and recall. On the 
other hand, SAE can perform effective classification by analyzing the features of the input 
data. The proposed ConvNeXt-SAEs DL algorithm combines the core concepts of these two DL 
types of architecture into a single hybrid model applied to the defect-detection system. 
Published data from real manufacturing lines on the Kaggle website is used for evaluation. 
Simulation results show that the ConvNeXt-SAEs algorithm improves the accuracy by 7% and 
40% as compared with the conventional ConvNeXt and CNN algorithms, respectively. Based 
on the obtained results, the proposed ConvNeXt-SAEs DL algorithm proves significant 
potential and advantages to be used in real-time industrial applications for defect detection. 
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