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An adaptive mixed finite element method using the Lagrange 

multiplier technique is used to solve elliptic problems with 

delta Dirac source terms. The problem arises in the use of 

Chow-Anderssen linear functional methodology to recover 

coefficients locally in parameter estimation of an elliptic 

equation from a point-wise measurement. In this article, we 

used  a posterior  error  estimator  based  on  averaging 

technique  as refinement  indicators  to produce  a cycle  of 

mesh adaptation , which is experimentally shown to capture 

singularity  phenomena . Our numerical results showed that 

the  adaptive  refinement  process  successfully  refines 

elements around the center of the source terms . The results 
also  showed  that

 
the

 
global
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process
 

in
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of
 

computation
 

time.
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1. INTRODUCTION 

In the study of the steady-state flow of 

groundwater in a confined aquifer Ω, the 

governing equation is the following elliptic 

partial differential equation (Yeh, 1986). 

( ) in ,uα−∇⋅ ∇ = Ωf   (1) 

where { }, 1,2,3d
dΩ ⊂ ∈�  is a bounded 

domain, :α Ω → �  denotes the 

transmissivity coefficient, :u Ω → �  is 

pressure and f is the source term. When the 

source term f and the coefficient α are 

given, appropriate boundary information 

about the solution u is required so that the 

corresponding forward (direct) problem of 

determining u in Ω has a unique solution. 

Conversely, the recovery of information 

about the coefficient α, when u and f are 

given, is an inverse problem with α being 

sensitive to perturbations in u and f. It is the 

recovery of α from measurements of u and 

f, through the utilization of equation (1), 

that is called the aquifer parameter 

identification problem. 

Previous study (Zwolak, 2008) 

examined the numerical performance of 

ansatz for the recovery of aquifer 

transmissivity from observational data. A 

particular problem of our interest is in the 

case of f is a point source function. To this 

end, we solve a Poisson problem with delta-

Dirac right hand side function and 

homogenous Dirichlet boundary condition: 

0
in ,

on ,0

xu

u

δ−∆ = Ω


∂Ω=
  (2) 

where 2Ω ⊂ � is a bounded polygonal 

domain and 
0x

δ is delta-Dirac function at 

point 0x  inside region Ω. Note that problem 

(2) arises in diverse fields such as the 

electric field generated by point charge, 

transport equations for efficient discharge 

in aquatic media, etc. 

Due to the singular characteristics of 

the solution of the problem (2), mesh 

refinements around the source point 0x  are 

required to improve the quality of the 

approximation. In this paper, we used a 

posteriori error control based on the 

averaging technique for the Poisson 

problem (Bahriawati and Carstensen, 

2005). Furthermore, we restrict our study 

for two-dimensional case, but this 

technique can be extended to a three-

dimensional case by selecting a 

corresponding adaptive method. 

2. ADAPTIVE METHOD 

Let T be a quasi-uniform partition of 

the domain Ω. In simplication, we applied 

the  adaptive  procedure  similar  to  
literature  (Adler  et al., 2011 ) as follows : 

We solve the problem   on the mesh to 

obtain  a solution  of  the  mixed  finite 

element  method  (SOLVE ). A posteriori 

error  estimates  the global  error  η and 

local errors associated with each element 
Kη , K T ∈ (ESTIMATE).  

      We  mark  the  element  based  on 

marking strategy for refinement (MARK

).  The  procedure  ended  with  mesh 

refinement  using  bisection  method  of 

the marked element (REFINE). In short, 

adaptive  finite  element  methods 

typically  consist  of successive  loops  of 

the sequence: 

SOLVE ESTIMATE MARK REFINE→
 

2.1. Solve and Estimate 

In this paper, we use the mixed finite 

element method with Lagrange multiplier 

technique based on (Bahriawati and 

Carstensen, 2005) to obtain flux h
p  and 
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solution hu . The a posteriori error estimates 

global error η and local errors for each 

element Kη  as follows 2 2 .K

K T

η η
∈

=   

2.2. Mark 

Then we compare global error η and 

error tolerance ε. If η ε≤ , then we are 

done since the required tolerance has been 

achieved, otherwise we select subset 

M T⊂  which contains the elements where 

the local errors are relatively large. In our 

problem, we expect that elements close to  

0x  to be marked for refinement since this 

area is where the error will be the most 

significant. We ordered elements based on 

their local error and then selecting few first 

of them to construct a set M satisfies the 

following criteria: given a marking 

parameter θ, where 0 1θ< < , find a subset 

M T⊂  such that 2 2.K

K M

η θη
∈

≥  

2.3. Refine 

Mesh refinement is done using the 

vertex bisection method (Adler et al., 

2011). This method chooses a vertex of 

each marked element K T∈  as the peak of 

the element and creates an additional node 

at the edge opposite (known as the base of 

K). The bisection is done by connecting the 

peak node to the additional node. If the 

adjacent element �K , is not refined, then 

our additional node will be a hanging node. 

Therefore, we also need to refine the 

element �K  which shares the same base 

with K. This type of refinement is chosen 

assuming that the support of regularised 

delta Dirac function is equally of the same 

distance from the triangle edges and the 

inclusion triangle always understood of an 

isosceles triangle. Other cases need careful 

analysis related to the error estimator such 

as for CR-basis (ShaoHong and XiaoPing, 

2008). 

 

3. NUMERICAL EXPERIMENTAL RESULTS 

AND DISCUSSION 

We have done a numerical experiment 

to assess the performance of an adaptive 

mesh-refinement strategy based on a 

posteriori error control. To simulate a delta 

Dirac function, we define 

( )
( ) ( ) ( )

0 0 ,

0

1

,
x B x a

f x x
B x a

χ= , where 

B(x0,a) is the ball centered at 0x  with radius 

a and ( )0 ,B x a
χ  is the characteristic function 

of the ball ( )0 ,B x a . As we progress             , 0a →

this function will behave similar to a delta 

Dirac function (Tiandho, 2017).  

We initiate the process with a very 

coarse mesh. At each step, our refinement 

method creates a new mesh better adapted 

to the solution of problem (2). To view a 

concentrated force function                           , 
0x

f  on point 0x

we  initialize  a  longer  than  the  edge  of 

element containing the point 0x . After 

several iterations, we set smaller values of 

a and continue the process. 

The problem is solved in the square

( ) ( )1,1 1,1Ω = − × − , with ( )0 0,0x = . We 

choose Dirichlet boundary conditions and 

initialise a = 0.4 and then set new values for 

a to 0.2; 0.1; 0.05 consecutively after three 

iterations. Then, we set a = 0.01 until error 

tolerance reached, which we set ε = 0.01. 

For this problem, we set our refinement 

parameter to be θ = 0.6, which means we 

adaptively refine 60% of the domain. Figure 

1 shows mesh grid and displacement for our 

initial iteration.  

Figures 2, 3, 4, 5, and 6 show some of 

the successive both refined meshes and 

displacements created in the process 

guided by η. We demonstrated the first 

iteration of different values of a, where 

[ ]0.2,0.1,0.05,0.01a ∈  with number of 

repetition and the number of degree of 
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freedom (d.o.f.) of each respective mesh 

and displacement prescribed on the caption 

of each figure. 

From these figures, we can see that 

our method successfully refine the  

mesh  grid around x0. The  progression of  

a  simulates  the  delta  Dirac function as 

expected. We can see that the mesh 

grid creates a ”ring” around x0 that 

slowly grows closer to the centre 

because of our choices of 

approximation function. Figure 6 shows 

the final iteration when the global error 

is just below the error tolerance and as 

we can see that the mesh around x0 is 

finely refined.  

Figure 7 shows the error curve for our 

adaptive method compared to uniform 

refinement process. Using our adaptive 

approach, the low global error is achieved 

in a far smaller number of elements than 

uniform refinement, meaning that our 

adaptive method is better than uniform 

refinement in terms of computational 

cost. 

 

(a) Mesh grid (b) Displacement 

Figure 1. a = 0.4, θ  = 0.6, iter = 1, d.o.f. = 32. 

 

  

(a) Mesh grid (b) Displacement 

Figure 2.

 

a = 0.2, θ 

 

= 0.6, iter = 4, d.o.f. = 162. 
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(a) Mesh grid (b) Displacement 

Figure 3. a = 0.1, θ  = 0.6, iter = 7, d.o.f. = 354.
 

(a) Mesh grid (b) Displacement 

Figure 4. a = 0.05, θ  = 0.6, iter = 10, d.o.f. = 706 .

  

(a) Mesh grid (b) Displacement 

Figure 5. a = 0.01, θ  = 0.6, iter = 13, d.o.f. = 1457.

 

(a) Mesh grid (b) Displacement 

Figure 6. a = 0.01, θ  = 0.6, iter = 24, d.o.f. = 26790 .
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Figure 7. Error curves for adaptive and uniform conditions.  

4. CONCLUSION 

We have applied a posteriori error 

control to estimate mixed finite element 

approximation for the Poisson problem with 

delta Dirac function source terms. An 

adaptive algorithm is introduced to refine 

elements guided by the error estimator. Our 

result shows that the adaptive refinement 

process is successfully improved elements 

around the centre of the source terms. We 

also show that the global error estimation is 

better than uniform refinement process. 

Furthermore, we could extend our adaptive 

refinement method for other problems and 

by some modifications for three-

dimensional case. 
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