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A data stream is used for handling dynamic databases, in 
which data can arrive continuously without limit. Association 
rule mining is a data mining technique, used to find the 
association between the data items in the databases. To 
generate association rules, frequent items are to be 
identified from the transactional database. Normally, in data 
mining, frequent-item-generation algorithms scan the 
database multiple times. But this is impossible in data 
streams because it handles dynamic databases. Hence, there 
is a need to develop a new algorithm, which reduces the 
number of database scans. In this work, two new algorithms 
named Scan-Reduced Indexing and Matrix algorithm are 
proposed for generating frequent itemsets in data streams. 
Performances of both algorithms are compared based on the 
execution time and the number of frequent items generated. 
Experimental results show that the performance of the Scan-
Reduced Indexing algorithm is more efficient than that of the 
Matrix algorithm. 
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1. INTRODUCTION 
 

In recent years, advances in information technology have led to large flows of data. In many 
applications, these large volumes of data must be mined for retrieving unknown and 
interesting patterns. The process of arriving at continuous dynamic data is known as data 
streams (Chan, 1998). Traditional data mining algorithms cannot be applied directly in data 
streams, since those algorithms can handle only static databases. Hence, there is a need to 
develop new algorithms and techniques for data stream mining to handle the continuous 
arrival of data. Frequent pattern mining is a core data mining operation. Frequent pattern 
mining focuses on discovering frequently occurring patterns in a dataset. The patterns can be 
itemsets or sequences or even subtrees or subgraphs depending on the type of dataset. 
Frequent pattern mining has become a basic task for many other data mining techniques like 
association rule mining, classification, and clustering. In recent times, mining frequent 
patterns over data streams have attracted a lot of research interest. 

The streaming algorithm is a method of managing the flow of data by examining the 
arriving items once and then discarding them (Basu, 1998). Datastream algorithms are 
responsible for managing continuously generated data, even if the volume of data is too large 
for memory. Multi-scan algorithms, which scan a database more than once, are not suitable 
for data streams. This is because of bounded memory, high-speed data arrival, and timely 
data processing. Hence, data streaming algorithms should be such that it applies only a one-
scan technique. Frequent itemsets mining in data streams is an important technique. It has a 
wide range of emerging applications (Agrawal & Srikant, 1995; Anand et al., 1998) such as 
weblog and click-stream mining, network traffic analysis, trend analysis and fraud detection 
in telecommunications data, e-business, stock market analysis, and sensor networks. Hence, 
it is necessary to mine frequent patterns in data streams. The main objective of this work is 
to generate frequent items in data streams with a minimum number of scans. To conduct this 
study, two new algorithms are proposed. They are the Matrix algorithm and Scan Reduced 
Indexing Algorithm. These algorithms scan the database only once and hence they are highly 
suitable for mining data streams.  

2. LITERATURE REVIEW 
2.1. Related Works 

Agrawal and Srikant were the first researchers to propose the Apriori algorithm. Two main 
processes are executed in the apriori algorithm: the first is candidate generation process, in 
which the support count of the corresponding items is calculated by scanning the 
transactional database and the second is large itemset generation, which is generated by 
pruning those candidate itemsets, which d have support count less than the minimum 
threshold. These processes are iteratively repeated until candidate itemsets or large itemsets 
become empty. Some researchers proposed the FP-growth method (Han et al., 2004) that 
mines all frequent itemsets without candidate generation. The FP-growth method follows the 
divide-and-conquer strategy to generate all frequent itemsets. The method uses a 
combination of the vertical and horizontal database format to store the dataset in the 
memory. FP-growth scans the database and generates all frequent items, reorders the items 
in descending order of their support. FP tree is constructed and items of transactions in the 
dataset are inserted into the FP-tree. From the FP-tree, frequent items, conditional pattern 
base, and conditional FP-tree of each frequent item are mined. Mining is performed 
recursively. 
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Many algorithms that have been proposed are only applicable to relational data. It is 
important to discover frequent patterns and association rules in XML data. Ding and Sundarraj 
retrieved frequent patterns and association rules in XML data. The challenge was the 
complexity of the structure in XML. The authors discussed the challenges and other important 
aspects of handling XML data. We insight into solutions and future research directions in 
association rule mining. Some researchers reported Equivalence CLAss Transformation 
(ECLAT) algorithm (2003). ECLAT uses the vertical-database representation and tidset-
intersection method to determine the support of an itemset. The Apriori and FP-growth 
methods generate frequent itemsets from a set of transactions in horizontal database 
representation (tid- itemset), where tid is a distinct transaction identifier and itemset is the 
set of items that belongs to the transaction. Mining frequent itemsets can also be performed 
with a dataset presented in vertical data format (item: tidset). Some researchers discussed 
(Mittal et al., 2015) mining frequent itemset in the transactional database (2015). The 
objective of this comparative analysis was to reduce the number of scans and improve 
efficiency. The strength and weaknesses of Apriori, DHP, Partitioning, Sampling, DIC, H-mine, 
FP-growth, and Eclat algorithms were analyzed. Finally, the authors observed that the FP-
growth algorithm worked better than any other algorithms. 

2.2. Frequent Itemset Mining in Data Streams 

Let D be a transaction dataset. Let t1, t2, t3….tn be a transaction. Thus, dataset D = {t1, t2, 
t3……tn}. A set of patterns in D are represented as F. Let c be the function to count the number 
of occurrences of F in D. It is defined as c: F X T -> N, where T is the set of transactions and N 
is the set of nonnegative integers. Let f and T be the parameters, such that f F, and T t. The 
counting function c(f,t) gives the occurrence of f in t. The support of a pattern f F in the dataset 
D is defined as in. 

Support (f) = ∑ I(c(f, t(k)))
𝑑

𝑘=0
              (1) 

Here I am the indicator function. The patterns f, are said to be frequent patterns if Support 
(f) is greater than the minimum support threshold. Frequent pattern mining is a core data 
mining operation. Mining frequent patterns over data streams have attracted a lot of research 
interest. Frequent pattern mining in data streams poses more challenges due to high memory 
and computational costs. Frequent pattern mining focuses on discovering frequently 
occurring patterns in a dataset. Different types of datasets used for finding frequent patterns 
are transaction datasets, text datasets, XML datasets, and graph datasets. Based on the type 
of datasets, the patterns, which can be itemsets, sequences, subtrees, or subgraphs, are 
identified.  In a data stream, transactions arrive continuously and the volume of transactions 
can be potentially infinite (Goulbourne et al., 2000; Griffin & Chen, 1998). A data stream D 
can be defined as a sequence of transactions [D = (t1, t2,… ti,….tj)] where ti is the ith arrived 

transaction. Traditionally, window models have been used to process and mine data streams. 
A window is defined as a subsequence of transactions arrived between the ith and jth 

transactions. It can be denoted as W[I,j] = (ti, ti+1,….., tj), i ≤ j. In this work also, the window 

model is applied, i.e., the continuous arrival of data is split into different partitions and each 
partition is termed a window. To process and mine data streams, often different window 
models are used. 

There are three categories of stream data processing models: They are Landmark window 
model, the Damped window model, and the Sliding window model. A window, W, can be 
either time-based or count-based, and it can be either a landmark window or a sliding 
window. A window W is said to be time-based only if it consists of a sequence of fixed-length 
time units, i.e. a sequence of transactions per hour or sequence of transactions for two hours, 
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etc. In this model, the number of transactions may vary within each time unit. A window W is 
said to be count-based if it consists of a sequence of batches, where each batch consists of an 
equal number of transactions. In this model, the number of transactions in each batch is the 
same. Similarly, a window can be a landmark window or a sliding window. The window that 
maintains all the transactions from a specified time in the past to the present moment is called 
the landmark window. For example, a landmark window model consists of a sequence of 
transactions from January 2017 to the present date. A landmark window does not distinguish 
recently arrived items from older ones. A sliding window model, on the other hand, considers 
the data from arrival to a certain limit in a time interval. For example, a sliding window model 
consists of a sequence of transactions in the past 12 months. This model, unlike any of the 
rest, gives more importance to recently arrived transactions. 

2.3. Issues in Frequent Itemset Mining Over Data Streams: 

The following are some of the issues in data streams (Ha & Park, 1998; Han et al., 2004; 
Han & Fu, 1999; Kaski et al., 1998). 
1. Since the streaming data is passed only once, multiple scans of the database are not 

possible. Hence, frequent itemset mining algorithms in the data stream must be a single 
scan algorithm. 

2. In a data stream, since data arrives continuously and the amount of data is also abundant, 
it is a challenge to keep the entire stream in the main memory or even in a secondary 
storage area. 

3. Mining streams require fast, real-time processing to keep up with the high data arrival 
rate and mining results are expected to be available within a short response time. 

3. METHODS 
 

Considering the above factors, this work has proposed two new algorithms, namely the 
Scan-Reduced Indexing algorithm and Matrix algorithm to retrieve high frequent items from 
data streams with the minimum number of scans. Both algorithms use the window concept 
and scan the database only once. Hence, they are well suited for data streams. 

3.1 Matrix Algorithm 

The assumption is that the data set is divided into many windows and they are considered 
one by one. Each window has many transactions and each transaction has many items. In this 
algorithm, a matrix is created. Its size is l x m, where l represents the number of items and m 
represents the number of transactions; The items in each transaction are considered and 

placed in a matrix table i.e. matlm =1. Likewise, all the items in each transaction are placed in 

a matrix table. Here, the database is scanned only once. From this matrix table, the number 
of occurrences of each item is calculated to verify if the number of occurrences of an item is 
greater than the threshold. This gives the list of the one-item frequent set. With these 
itemsets, candidate generation, i.e. 2- itemsets, 3- itemsets, and n-itemsets are generated 
from this matrix table alone, without scanning the original database. This candidate 
generation process is repeated until no further generation is made. Finally, from the table, 
frequent itemsets are retrieved. 
Example: Consider the given example. From window 1, T1, T2, T3 T4 and T5 are transactions 
ids and 
1, 2, 3, 4, 5, 6, 7, 8, 9 are items. Sample database from Window1:  
T1 - {1,3,5,7,9} 
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T2 – {2,4,5}  
T3 – {3,7,9}  
T4 – {1,2,3,4} T5 – {5,6,7} 

Step 1 – Matrix table: In this step, a matrix table is constructed. Transactions T1, T2, T3, T4, 
and T5 are represented as columns, and items 1,2,3,4,5,6,7,8, and 9 are represented in rows. 
For example, the items in Transaction 1, T1, are 1,3,5,7,9. In the matrix Table 1 is put in their 
respective location. Similarly, for T2, ‘1’ is put in 2,4,5 locations. The same is repeated for all 
the transactions. The resultant matrix table is shown in Table 1. 

Step 2: In this step, the number of counts of each item is retrieved from the table. It is then 
compared with minimum support (Min_Sup). For example, if Min Sup is 2, the items whose 
count is ≥ 2 are selected. From the above matrix, the items {1,2,3,4,5,7,9} are selected. 

Step 3: In this step, the first item, 1, is compared with the remaining items {2,3,4,5,7,9} to 
generate 2- a candidate itemset. This is shown in the first column of Table 2. The transaction, 
in which it appeared, is also given. For example, 1,2 -> 4 in the table means that the itemset 

{1,2} appears in transaction t4. Similarly {1,3} -> 1,4 means that the itemset {1,3} appears in 

t1 and t4. Likewise, the table is constructed for the remaining items and the resultant table is 
shown in Table 2. 

Table 1. Matrix table. 

Transactions → 
Items  

T1 T2 T3 T4 T5 counts 

1 1   1  2 
2  1  1  2 
3 1  1 1  3 
4  1  1  2 
5 1 1   1 3 
6     1 1 
7 1  1  1 3 
9 1  1   2 

 

Table 2. Candidate 2 itemsets. 

Item1 Item2 Item3 Item4 Item5 Item7 Item9 
1,2 -> T4 

1,3 -> T1,T4 
1,4 -> T4 
1,5 -> T1 

1,7 -> T1 
1,9 -> T1 

2,3 -> T4 
2,4 -> T2, T4 

2,5 -> T1 
2,7 -> 0 
2,9 -> 0 

 

3,4 -> T4 
3,5 -> T1 

3,7 -> T1,T3 
3,9 -> T1, T3 

 

4,5 ->T2 
4,7 -> 0 
4,9 -> 0 

 
 

5,6 -> T5 
5,7 -> T1, T5 

5,9 -> T1 
 

7,9 -> T1, T3 - 

 
Step 4: The number of occurrences of each item set is counted and the count value is 

verified with minimum support; i.e. the minimum threshold is 2. Hence, the itemsets whose 
support is greater than or equal to 2 are selected. 
1,3 -> T1,T4 
2,4 -> T2,T4 

3,7 -> T1,T3 

3,9 -> T1,T3 

5,7 -> T1,T5 

7,9 -> T1,T3 
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Step 5: The resultant candidate 2-itemsets are {1,3}, {2,4}, {3,7}, {3,9}, {5,7}, {7,9}. From 
this, candidates 3-itemsets are generated. Here, {1,3} itemset is combined with remaining 
itemset {2,4} {3,7} {3,9} {5,7} {7,9} and resultant frequent 3 itemsets are as follows: {1,3,2}, 
{1,3,4}, {1,3,7}, {1,3,9}, and {1,3,5}. Similarly, {2,4} is combined with remaining itemset {3,7}, 
{3,9}, {5,7}, {7,9} to form {2,4,3},{2,4,7}, {2,4,9}, {2,4,5}. The same combination is repeated for 
all the itemsets. The resultant 3 itemsets are {1,3,2}, (1,3,4), {1,3,7}, {1,3,9}, {1,3,5} {2,4,3}, 
{2,4,7}, {2,4,9}, {2,4,5}, {3,7,9}, {3,7,5}, {3,9,5}, and {5,7,9}. Step 6: From Table 3, it was found 
that the resultant 3 candidate itemsets are: {3,7,9}, since its support is 2. Step 7: From 3 
candidate itemset {3,7,9}, further candidates cannot be generated. Hence the algorithm stops 
here and the resultant frequent itemsets are {1}, {2}, {3}, {4}, {5}, {7} {9}, {1,3}, {2,4}, {3,7}, 
{3,9},{5,7}, {7,9}, and {3,7,9}. This is frequent itemsets of window 1. Similarly, frequent 
itemsets for remaining windows are also generated. Matrix algorithm show in Figure 1. 

Table 3. Candidate 3- itemsets. 

{1,3} {2,4} {3,7} {3,9} {5,7} {5,9} 
{1,3,2}->T4 
{1,3,4}->T4 
{1,3,7}->T1 
{1,3,9}->T1 
{1,3,5}->T1 

{2,4,3}->T4 
{2,4,7}->0 
{2,4,9}->0 
{2,4,5}->T2 

{3,7,9}->T1,T3 
{3,7,5}->T1 
 

{3,9,5}->T1 
 

{5,7,9}->T1 -- 

 

 

Figure 1. Matrix algorithm. 
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3.2. Scan-Reduced Indexing Algorithm 

In the Scan–Reduced Indexing algorithm (see Figure 2), an index table having two fields is 
generated. The first field represents the item and the second field represents the transaction 
id. All of the items in each transaction are placed in the first field of the index table, and their 
corresponding transaction ids are placed in the second field. Then, in the next transaction, 
the algorithm verifies whether the items are already present in the index table or not. If the 
item is already present in the index table, it only stores the current transaction id in the 
second field along with the previous one. And, in case it does not, a new entry for that item 
is made.  

 

Figure 2. Pseudo code for scan - reduced indexing algorithm. 

This is repeated for all the transactions. After creating the index table, the number of 
occurrences of each item is identified, and then the algorithm verifies if the number of 
occurrences is greater than threshold or not. If it is greater than the threshold, it is considered 
for the next candidate generations. Otherwise, it is ignored. This process is repeated for all 
the candidate generations. Example: Consider the following example from window 1. From 
window 1, T1, T2, T3 T4 and T5 are transactions ids and 1, 2, 3, 4, 5, 6, 7, 8, 9 are items. Sample 
database from Window1: 
t1 - {1,3,5,7,9} 
t2 – {2,4,5} 
t3 – {3,7,9} 
t4 – {1,2,3,4} 
t5 – {5,6,7} 

Step 1: Consider transaction 1. The items of t1 are 1,3,5,7,9. In the index table, create a 
row for each item, and in the second field enter the transaction id as shown in Table 4. The 
above Table 4, is the Index table, which updates the information after reading the first 
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transaction. Now, the second transaction t2=2,4,5 is considered. The first item is 2. The 
algorithm verifies if 2 is already present in the index table. Since 2 is not present, a new row 
is created and 2 is placed under the ‘Items’ column and 2 is placed in the ‘Transaction Id’ 
column. Then, the algorithm verifies if 4 is present in the index table. Since 4 is not present 
here, a new row is created and 4 is placed under the ‘Items’ field and 2 is placed in the 
‘Transaction Id’ column. The next item in t2 is 5, which is already present in the index table. 
So, in item 5, the transaction id 2 is added. The updated index table is given in Table 5. 

Table 4. Index table. 

Items Transaction ids 
1 1 
3 1 
5 1 
7 1 
9 1 

 
Table 5. Final index table. 

Items Transction Ids 
1 1 
3 1 
5 1,2 
7 1 
9 1 
2 2 
4 2 

 

Now, consider t3, the items are {3,7,9}. The updated index table is given in Table 6. 

Table 6. Updated table. 

Items Transaction Ids 
1 1 
3 1,3 
5 1,2 
7 1,3 
9 1,3 
2 2 
4 2 

 

Now, consider t4 = {1,2,3,4}. The updated table is given in Table 7. 

Table 7. Updated table after t4. 

Items Transaction Ids 
1 1,4 
3 1,3,4 
5 1,2 
7 1,3 
9 1,3 
2 2,4 
4 2,4 
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Now, consider t5={5,6,7}. The updated table is given in Table 8. 

Table 8. Updated table after t5. 

Items Transaction Ids 
1 1,4 
3 1,3,4 
5 1,2,5 
7 1,3,5 
9 1,3 
2 2,4 
4 2,4 
6 5 

 

Step 2: The number of occurrences of each item in the final updated index table is counted. 
In the above example, the count for item 1 is 2, i.e. item 1 is found in t1 and t4. Likewise, the 
count for item 3 is 3; the count for item 5 is 3; the count for item 7 is 3; the count for item 9 
is 2; the count for item 2 is 2; the count for item 4 is 2 and the count for item 6 is 1. The items 
whose support is greater than or equal to 2 are selected. Thus, the items selected for next 
candidate generation are {1,3,5,7,9,2,4} 

Step 3: Candidates are generated from the index table, by identifying the common 
transaction ids of the two items. For example, from the index table given below, the candidate 
generation, i.e. two itemsets (1,3) and their occurrences are obtained. In the same way, all 
the possible 2-itemsets and their occurrences are identified. This is shown in Table 9. From 
the Table 10, the number of occurrences of each 2-itemsets is counted. The resultant itemsets 
whose threshold value greater than or equal to 2 are: {1,3} {3,7} {3,9} {5,7} {7,9} {2,4}. Step 4: 
Now, 3-itemsets are generated from the resultant itemsets and it is shown in Table 11. From 
Table 11, it was found that the resultant 3 candidate itemsets are: {3,7,9} since its support is 
2. 

Step 5: From 3 candidate itemset {3,7,9} additional candidates cannot be generated. 
Hence, the algorithm stops here and the resultant frequent itemsets are { {1}, {2}, {3}, {4}, {5}, 
{7} {9}, {1,3}, {2,4}, {3,7}, {3,9},{5,7}, {7,9}, {3,7,9} }. This is frequent itemsets of window 1. 
Similarly, frequent itemsets for remaining windows are also generated. 

Table 9. Itemsets generation. 

Items Transaction Ids 
1 1,4 
3 1,3,4 

Table 10. Candidate Generation – 2-itemsets. 

Comparison 
of item 1 with 

other items 

Item3 with 
other items 

Item5 with 
other items 

Item7 with 
other items 

Item9 with 
other items 

Item 2 
with other 

items 

Item 4 
with other 

items 
1,3 -> T1,T4 

1,5 -> T1 
1,7 -> T1 
1,9 -> T1 
1,2 -> T4 
1,4 -> T4 

3,5 -> T1 
3,7 -> T1, T3 
3,9 -> T1, T3 

3,2 -> T4 
3,4 -> T4 

 

5,7 -> T1, T5 
5,9 -> T1 
5,2 -> T2, 
5,4 -> T2 

 

7,9 -> T1, T3 

7,2 -> - 
7,4 ->-- 

 

9,2 -> - 
9,4-> - 

 
 

2,4 -> T2, T4 -- 

 

http://dx.doi.org/10.17509/xxxx.


Vijayarani et al., Frequent Items Mining on Data Streams using Matrix… | 132 

DOI: http://dx.doi.org/10. 17509/xxxx.xxxx 

p- ISSN 2776-6098 e- ISSN 2776-5938 

Table 11. Candidate 3- itemsets. 

{1,3} {3,7} {3,9} {5,7} {7,9} {2,4} 
{1,3,7}-> T1 
{1,3,9}- > T1 
{1,3,5}-> T1 
{1,3,2}-> T4 
{1,3,4}-> T4 

{3,7,9}-> T1, T3 
{3,7,5}-> T1 
{3,7,2}->- 
{3,7,4}->- 
 

{3,9,5}-> T1 
{3,9,2}->- 
{3,9,4}->- 
 

{5,7,9}-> T1 
{5,7,2}->- 
{5,7,4}->- 

{7,9,2}->- 
{7,9,4}->- 

-- 

 

4. RESULTS AND DISCUSSION 
 

The proposed algorithms, Matrix Algorithm and Scan-Reduced Indexing Algorithm are 
implemented in Java with MySQL. The connect data set from the UCI repository was used for 
experimentation. It consists of 67,558 instances and 48 attributes. In this work, five windows 
W1, W2, W3, W4, and W5 are created with the size of 1K, 2K, 5K, and 10K. Different threshold 

values are applied for analyzing the results. The performance is the analysis based on the 
number of items generated and the execution time.  Table 12 shows the items generated in 
the matrix algorithm at various thresholds in each window. Figure 3 shows the graphical 
representation of the same. 

Table 12. Frequent item generation for matrix algorithm. 

 

Window Size 
Threshold 

(𝝈) - % 
1000 Ds 2000 Ds 5000 Ds 10000 Ds 

Items 

W1 

20 83782 89768 90878 98768 

40 87686 86445 82019 90890 

60 83738 89078 87898 93787 

W2 

20 87483 89372 89281 94892 

40 88374 90078 90189 95922 

60 83721 91083 92837 99282 

W3 

20 90271 87989 94827 91837 

40 83726 88291 92837 90187 

60 92817 90921 89173 94288 

W4 

20 81928 89189 88198 92018 

40 90283 90182 99282 97982 

60 82717 93849 94872 93879 

W5 

20 91871 97928 98272 92873 

40 89173 91891 93872 89278 

60 89837 88972 91981 93874 
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Figure 3. Matrix algorithm for item generations. 

Table 13 shows the execution time of the matrix algorithm at various thresholds in each 
window. Figure 4 shows the graphical representation of the same. Table 14 shows the items 
generated in the SRI algorithm at various thresholds in each window. Figure 5 shows the 
graphical representation of the same. Table 15 shows the execution time of the SRI algorithm 
and Figure 6 shows the chart representation of the same. 

Table 13. Execution time for matrix algorithm. 

 
 
 

 

 

 
 

 

 
 

 
 
 

 
 
 

Window Size 
Threshold 

(𝝈) - % 
1000 Ds 2000 Ds 5000 Ds 10,000 Ds 

Time (ms) 

W1 

20 650 657 655 699 

40 651 650 654 708 

60 653 651 659 719 

W2 

20 657 659 650 755 

40 654 659 654 790 

60 655 658 659 699 

W3 

20 655 665 657 701 

40 656 645 645 755 

60 652 658 656 743 

W4 

20 640 648 659 798 

40 643 655 660 698 

60 650 659 678 712 

W5 
20 641 660 690 799 
40 666 678 704 795 
60 659 680 714 784 
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Figure 4. Execution time for matrix algorithm. 

Table 14. SRI algorithm for frequent item generation. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5. Frequent item generations for sri algorithm. 

Window 
Size 

Threshold 
(𝝈) - % 

1000 Ds 2000 Ds 5000 Ds 10,000 Ds 

Items 

W1 20 98738 109721 150442 153783 
40 108937 120991 160820 155026 
60 119889 101891 130810 188374 

W2 20 99821 129391 182098 197348 
40 109283 148857 182378 199019 
60 129872 194887 176476 183741 

W3 20 99271 160938 192083 109834 
40 109890 139874 98783 177913 
60 189828 199830 99804 187408 

W4 20 102887 97321 183207 99132 
40 138727 178321 98301 198372 
60 176819 134771 149747 190731 

W5 20 130027 143098 199789 176437 
40 147589 185994 152372 134355 
60 159576 199381 158387 198074 
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Table 15. Execution time for sri algorithm. 

 

 

 

Figure 6. Execution time for sri algorithm. 

Now both the algorithms are compared. Table 15 shows the comparison of the execution 
time of the SRI and Matrix algorithm. Similarly, table 16 shows the number of items retrieved 
in both algorithms. Figures 7 and 8 show a graphical representation of the results. From the 
results, it was found that the SRI algorithm was more efficient than the Matrix algorithm. 

 

 

Window 
Size 

Threshold 
(𝝈) - % 

1000 Ds 2000 Ds 5000 Ds 10,000 Ds 

Time (ms) 

W1 20 499 501 532 566 
40 493 517 534 578 
60 501 521 544 545 

W2 20 514 503 529 567 

40 513 516 519 598 

60 517 515 550 599 

W3 20 499 490 527 555 

40 498 498 532 590 

60 505 504 533 581 

W4 20 498 513 520 553 

40 497 521 529 567 

60 501 520 550 599 

W5 20 495 532 548 573 
40 499 512 599 596 
60 504 519 575 599 
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Table 16. Comparison of execution time of ma and sri algorithm. 

Window 
size 

Threshold 

1000 Ds 2000 Ds 5000 Ds 10,000 Ds 

MA 
algorithm 

SRI 
algorithm 

MA 
algorithm 

SRI 
algorithm 

MA 
algorithm 

SRI 
algorithm 

MA 
algorithm 

SRI 
algorithm 

W1 20 650 499 657 501 655 532 699 566 

40 651 493 650 517 654 534 708 578 

60 653 501 651 521 659 544 719 545 

W2 20 657 514 659 503 650 529 755 567 

40 654 513 659 516 654 519 790 598 

60 655 517 658 515 659 550 699 599 

W3 20 655 499 665 490 657 527 701 555 

40 656 498 645 498 645 532 755 590 

60 652 505 658 504 656 533 743 581 

W4 20 640 498 648 513 659 520 798 553 

40 643 497 655 521 660 529 698 567 

60 650 501 659 520 678 550 712 599 

W5 20 641 495 660 532 690 548 799 573 

40 666 499 678 512 704 599 795 596 

60 659 504 680 519 714 575 784 599 

 

 

 

Figure 7. Comparison of execution time in MA and SRI algorithm. 
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Table 17. Comparison of No. of Items Generated in MA and SRI Algorithm. 

Window 
size 

Threshold 

1000 Ds 2000 Ds 5000 Ds 10000 Ds 

MA 
algorithm 

SRI 
algorithm 

MA 
algorithm 

SRI 
algorithm 

MA 
algorithm 

SRI 
algorithm 

MA 
algorithm 

SRI 
algorithm 

W1 20 83782 98738 89768 109721 90878 150442 98768 153783 

40 87686 108937 86445 120991 82019 160820 90890 155026 

60 83738 119889 89078 101891 87898 130810 93787 188374 

W2 20 87483 99821 89372 129391 89281 182098 94892 197348 

40 88374 109283 90078 148857 90189 182378 95922 199019 

60 83721 129872 91083 194887 92837 176476 99282 183741 

W3 20 90271 99271 87989 160938 94827 192083 91837 109834 

40 83726 109890 88291 139874 92837 98783 90187 177913 

60 92817 189828 90921 199830 89173 99804 94288 187408 

W4 20 81928 102887 89189 97321 88198 183207 92018 99132 

40 90283 138727 90182 178321 99282 98301 97982 198372 

60 82717 176819 93849 134771 94872 149747 93879 190731 

W5 20 91871 130027 97928 143098 98272 199789 92873 176437 

40 89173 147589 91891 185994 93872 152372 89278 134355 

60 89837 159576 88972 199381 91981 158387 93874 198074 

 

 

Figure 8. Comparison of the number of items generated in MA and SRI algorithm. 

 

5. CONCLUSION 
 

Association rule mining is the most essential data mining technique to discover hidden 
patterns from large volumes of data. This research mainly focused on finding an increased 
number of frequent itemsets in data streams. This research has proposed two algorithms—
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MA and SRI algorithm—to find frequent items from data streams. Both of them have used 
two novel data structures, Matrix structure and Index list, to store the transaction details. 
This structure can be used for further processing so that database does need not to be 
scanned again and again. The algorithms scan database only once, and hence, both algorithms 
are suitable for mining frequent items in data streams. The performance of these algorithms 
has been assessed based on the number of items generated and the execution time, by using 
different threshold values for five windows. The result shows that the proposed SRI algorithm 
performs better than the MA algorithm, and, since the SRI algorithm works faster than the 
MA algorithm, it generates more frequent items than the MA algorithm. 
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